如圖,Rt△ACB中,∠ACB=90°,∠ABC的角平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD-AH=AB;④DG=AP+GH.其中正確的是(  )
分析:①根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和與角平分線的定義表示出∠CAP,再根據(jù)角平分線的定義∠ABP=
1
2
∠ABC,然后利用三角形的內(nèi)角和定理整理即可得解;
②③先根據(jù)直角的關(guān)系求出∠AHP=∠FDP,然后利用角角邊證明△AHP與△FDP全等,根據(jù)全等三角形對應(yīng)邊相等可得DF=AH,對應(yīng)角相等可得∠PFD=∠HAP,然后利用平角的關(guān)系求出∠BAP=∠BFP,再利用角角邊證明△ABP與△FBP全等,然后根據(jù)全等三角形對應(yīng)邊相等得到AB=BF,從而得解;
④根據(jù)PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根據(jù)等角對等邊可得DG=AG,再根據(jù)等腰直角三角形兩腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜邊大于直角邊,AF>AP,從而得出本小題錯誤.
解答:解:①∵∠ABC的角平分線BE和∠BAC的外角平分線,
∴∠ABP=
1
2
∠ABC,
∠CAP=
1
2
(90°+∠ABC)=45°+
1
2
∠ABC,
在△ABP中,∠APB=180°-∠BAP-∠ABP,
=180°-(45°+
1
2
∠ABC+90°-∠ABC)-
1
2
∠ABC,
=180°-45°-
1
2
∠ABC-90°+∠ABC-
1
2
∠ABC,
=45°,故本小題正確;
②③∵∠ACB=90°,PF⊥AD,
∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,
∴∠AHP=∠FDP,
∵PF⊥AD,
∴∠APH=∠FPD=90°,
在△AHP與△FDP中,
∠AHP=∠FDP
∠APH=∠FPD=90°
AP=PF

∴△AHP≌△FDP(AAS),
∴DF=AH,
∵AD為∠BAC的外角平分線,∠PFD=∠HAP,
∴∠PAE+∠BAP=180°,
又∵∠PFD+∠BFP=180°,
∴∠PAE=∠PFD,
∵∠ABC的角平分線,
∴∠ABP=∠FBP,
在△ABP與△FBP中,
∠PAE=∠PFD
∠ABP=∠FBP
PB=PB
,
∴△ABP≌△FBP(AAS),
∴AB=BF,AP=PF故②小題正確;
∵BD=DF+BF,
∴BD=AH+AB,
∴BD-AH=AB,故③小題正確;
④∵PF⊥AD,∠ACB=90°,
∴AG⊥DH,
∵AP=PF,PF⊥AD,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG,
∵∠PAF=45°,AG⊥DH,
∴△ADG與△FGH都是等腰直角三角形,
∴DG=AG,GH=GF,
∴DG=GH+AF,
∵AF>AP,
∴DG=AP+GH不成立,故本小題錯誤,
綜上所述①②③正確.
故選A.
點評:本題考查了直角三角形的性質(zhì),全等三角形的判定,以及等腰直角三角形的判定與性質(zhì),等角對等邊,等邊對等角的性質(zhì),綜合性較強,難度較大,做題時要分清角的關(guān)系與邊的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,Rt△ACB中,∠ACB=90°,DE∥AB,若∠BCE=30°,則∠A=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ACB中,∠ACB=90°,點D、E在AB上,AC=AD,BE=BC,則∠DCE的大小是
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四邊形ABDE=
3
2
S△ABP,其中正確的是(  )
A、①③B、①②④
C、①②③D、②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H. 
求證:①PF=PA;     ②AH+BD=AB.

查看答案和解析>>

同步練習(xí)冊答案