【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是 .
【答案】60°
【解析】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,
∴∠AOC=∠BOD=40°,AO=CO,
∵∠AOD=90°,
∴∠BOC=90°﹣40°×2=10°,
∠ACO=∠A= (180°﹣∠AOC)= (180°﹣40°)=70°,
由三角形的外角性質(zhì)得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.
故答案為:60°.
根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOC=∠BOD=40°,AO=CO,再求出∠BOC,∠ACO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直線交于點(diǎn)E,過(guò)點(diǎn)D作DF∥BE交BC所在直線于點(diǎn)F.
(1)如圖1,AB<AD,
①求證:四邊形BEDF是菱形;
②若AB=4,AD=8,求四邊形BEDF的面積;
(2)如圖2,若AB=8,AD=4,請(qǐng)按要求畫出圖形,并直接寫出四邊形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把a(bǔ)、b兩個(gè)數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個(gè)交點(diǎn),則k的取值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列語(yǔ)句,設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程:
甲數(shù)比乙數(shù)的倍少;
甲數(shù)的倍與乙數(shù)的倍的和是;
甲數(shù)的與乙數(shù)的的差是;
甲數(shù)與乙數(shù)的和的倍比乙數(shù)與甲數(shù)差的多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)試證明:無(wú)論取何值此方程總有兩個(gè)實(shí)數(shù)根;
(2)若原方程的兩根,滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:
(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=8cm.點(diǎn)E、F、G分別從點(diǎn)A、B、C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針?lè)较蛞苿?dòng).點(diǎn)E、G的速度均為2cm/s,點(diǎn)F的速度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),三個(gè)點(diǎn)隨之停止移動(dòng).設(shè)移動(dòng)開(kāi)始后第t秒時(shí),△EFG的面積為S(cm2)
(1)當(dāng)t=1秒時(shí),S的值是多少?
(2)寫出S和t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點(diǎn)F在矩形的邊BC上移動(dòng),當(dāng)t為何值時(shí),以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F、C、G為頂點(diǎn)的三角形相似?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com