【題目】如圖,在邊長為2的正方形ABCD中,點P是邊AD上的動點(點P不與點A、點D重合),點Q是邊CD上一點,聯(lián)結PB、PQ,且∠PBC=∠BPQ.
(1)當QD=QC時,求∠ABP的正切值;
(2)設AP=x,CQ=y,求y關于x的函數(shù)解析式;
(3)聯(lián)結BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個角,并求出它的度數(shù);若不存在,請說明理由.
【答案】(1) ;(2) (0<x<2);(3)見解析
【解析】試題分析:(1)延長PQ交BC延長線于點E.設PD=x,由∠PBC=∠BPQ可得EB=EP,再根據(jù)AD//BC,QD=QC可得PD=CE,PQ=QE,從而得BE=EP= x+2, QP=,在Rt△PDQ中,根據(jù)勾股定理可得,從而求得的長,再根據(jù)正切的定義即可求得;
(2)過點B作BH⊥PQ,垂足為點H,聯(lián)結BQ,通過證明Rt△PAB Rt△PHB,得到AP = PH =x,通過證明Rt△BHQ Rt△BCQ,得到QH = QC= y,在Rt△PDQ中,根據(jù) 勾股定理可得PD2+QD2=PQ2,代入即可求得;
(3)存在,根據(jù)(2)中的兩對全等三角形即可得.
試題解析:(1)延長PQ交BC延長線于點E,設PD=x,
∵∠PBC=∠BPQ,
∴EB=EP,
∵四邊形ABCD是正方形,
∴AD//BC,∴PD∶CE= QD∶QC= PQ∶QE,
∵QD=QC,∴PD=CE,PQ=QE,
∴BE=EP= x+2,∴QP=,
在Rt△PDQ中,∵,∴,解得,
∴,∴;
(2)過點B作BH⊥PQ,垂足為點H,聯(lián)結BQ,
∵AD//BC,∴∠CBP=∠APB,∵∠PBC=∠BPQ,∴∠APB=∠HPB,
∵∠A=∠PHB=90°,∴BH = AB =2,∵PB = PB,∴Rt△PAB Rt△PHB,
∴AP = PH =x,
∵BC = BH=2,BQ = BQ,∠C=∠BHQ=90°,
∴Rt△BHQ Rt△BCQ,∴QH = QC= y
在Rt△PDQ中,∵,∴,
∴;
(3)存在,∠PBQ=45°.
由(2)可得, , ,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學實踐課上,同學們分組測量教學樓前國旗桿的高度.小澤同學所在的組先設計了測量方案,然后開始測量了.他們全組分成兩個測量隊,分別負責室內測量和室外測量(如圖).室內測量組來到教室內窗臺旁,在點E處測得旗桿頂部A的仰角α為45°,旗桿底部B的俯角β為60°. 室外測量組測得BF的長度為5米.則旗桿AB=______米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小強從A處出發(fā)沿北偏東70°方向行走,走至B處,又沿著北偏西30°方向行走至C處,此時需把方向調整到與出發(fā)時一致,則方向的調整應是( 。
A. 左轉 80° B. 右轉80° C. 右轉 100° D. 左轉 100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點分別在BC和CD上,下列結論:
(1)BE=DF;(2)∠AEB=75°;(3)BE+DF=EF;(4).
其中正確的序號是____________(把你認為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三張形狀、大小相同但畫面不同的風景圖片,都按同樣的方式剪成相同的三段,然后將上、中、下三段分別混合洗勻,從三堆圖片中隨機各抽出一張, 求這三張圖片恰好組成一張完整風景圖片的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表數(shù)據(jù)是科研小組在某地區(qū)根據(jù)調查獲取的:“距離地面的高度(千米)與此處的溫度(攝氏度)”的關系。
距離地面高度/千米 | 0 | 1 | 2 | 3 | 4 | 5 |
溫度/攝氏度 | 20 | 14 | 8 | 2 | -4 | -10 |
根據(jù)上表,請你回答:
(1)上表中___________是自變量;_________________是因變量;
(2)如果用表示距離地面的高度(千米),表示溫度(攝氏度),請你寫出與的關系式____________________________________;
(3)請你利用(2)的結論,求該地區(qū):①距離地面6.2千米的高空溫度是多少?②當高空某處溫度為-52度時,該處的高度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車同時同時出發(fā)從A地前往B地,乙行駛途中有一次停車修理,修好后乙車的行駛速度是原來的2倍.兩車距離A地的路程(千米)與行駛時間(時)的函數(shù)圖象如圖所示.
(1)求甲車距離A地的路程(千米)與行駛時間(時)之間的函數(shù)關系式;
(2)當x=2.8時,甲、乙兩車之間的距離是 千米;乙車到達B地所用的時間的值為 ;
(3)行駛過程中,兩車出發(fā)多長時間首次后相遇?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com