【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).直線交軸于點(diǎn),交軸于點(diǎn),,垂足為,交軸負(fù)半軸于點(diǎn),且點(diǎn)坐標(biāo)為.
(1)求直線的解析式;
(2)點(diǎn)為直線右側(cè)第一象限內(nèi)一點(diǎn),連接、,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到線段,點(diǎn)落在點(diǎn)處,設(shè)點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo)(用含的式子表示);
(3)在(2)的條件下,過(guò)點(diǎn)作垂直于軸于點(diǎn),交于點(diǎn),連接,點(diǎn)為延長(zhǎng)線上一點(diǎn),連接,交于點(diǎn),連接,若,,求點(diǎn)的坐標(biāo).
【答案】(1)y=x+2;;(2)Q(-m2+m,4-m);(3)P(,).
【解析】
(1)由已知可得∠DAO=45°,進(jìn)而得到AD直線的k=1,將點(diǎn)A(-2,0)代入即可;
(2)過(guò)點(diǎn)P作x軸、y軸垂線,相交于點(diǎn)M,過(guò)點(diǎn)Q作y軸垂線,交于點(diǎn)N,由已知條件可證明△CQN≌△DMP(AAS),所以有QN=MP,CM=CN,即可求Q點(diǎn)坐標(biāo);
(3)由題意可求G(m,4-m),因此GQ與y軸垂直,由QG=GF,可求F(m,4-m-m2),求出CF所在直線解析式為y=-(1+m)x+4,確定點(diǎn)E(,4-m);過(guò)點(diǎn)E作ET垂直x軸,過(guò)點(diǎn)G作GS垂直PH,交PB于點(diǎn)S,可證明△ETB≌△HBP(HL),由平行的性質(zhì)和等腰直角三角形的性質(zhì)可知∠EGB=∠PGB=90°+45°=135°,得到△EGB≌△PGB(AAS),故有EG=PG,將點(diǎn)的坐標(biāo)代入有m-=-m2+m+4-(4-m),求出m即可.
解:(1)由題意可知B(4,0),C(0,4),
∴CO=BO,
∴∠CBO=45°,
∵AD⊥BC,
∴∠DAO=45°,
∵A(-2,0),
∴AD的直線解析式為y=x+2;
(2)如圖,過(guò)點(diǎn)P作x軸、y軸垂線,相交于點(diǎn)M,過(guò)點(diǎn)Q作y軸垂線,交于點(diǎn)N,
∵∠PCQ=90°,∠MCN=90°,
∴∠MCP=∠NCQ,
∵CP=CQ,∠CNQ=∠CMP=90°,
∴△CQN≌△DMP(AAS),
∴QN=MP,CM=CN
∵P的坐標(biāo)為(m,-m2+m+4),
∴CM=m,MP=4-(-m2+m+4)=m2-m,
∴Q(-m2+m,4-m);
(3)如圖,
∵PH垂直于x軸,
∴G點(diǎn)橫坐標(biāo)為m,
∵G點(diǎn)在直線BC上,
∴G(m,4-m),
∵QG=GF,
∴m2=4-m-yF,
∴F(m,4-m-m2)
∴CF所在直線解析式為y=-(1+m)x+4,
∴E(,4-m),
過(guò)點(diǎn)E作ET垂直x軸,過(guò)點(diǎn)G作GS垂直PH,交PB于點(diǎn)S,
∴ET=4-m,HB=4-m,
∴ET=HB,
∵BE=BP,
∴△ETB≌△HBP(HL),
∴∠EBT=∠BPH,
∵QG∥OB,
∴∠EBT=∠GEB,
∴∠GEB=∠BPG,
∠EGB=∠PGB=90°+45°=135°,
∴△EGB≌△PGB(AAS),
∴EG=PG,
∴m-=-m2+m+4-(4-m),
∴m=±,
∵P為直線BC右側(cè)第一象限內(nèi)一點(diǎn),
∴m=,
∴P(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN//EF, 點(diǎn)C 為兩直線之間一點(diǎn),若∠CAM 的平分線與∠CBF 的平分線所在的直線相交于點(diǎn) D ,則∠ACB與 ∠ADB 之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大;
其中結(jié)論正確有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料解決問(wèn)題:
材料:古希臘著名數(shù)學(xué)家 畢達(dá)哥拉斯發(fā)現(xiàn)把數(shù)1,3,6,10,15,21…這些數(shù)量的(石子),都可以排成三角形,則稱像這樣的數(shù)為三角形數(shù).
把數(shù) 1,3,6,10,15,21…換一種方式排列,即
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15
…
從上面的排列方式看,把1,3,6,10,15,…叫做三角形數(shù)“名副其實(shí)”.
(1)設(shè)第一個(gè)三角形數(shù)為a1=1,第二個(gè)三角形數(shù)為a2=3,第三個(gè)三角形數(shù)為a3=6,請(qǐng)直接寫出第n個(gè)三角形數(shù)為an的表達(dá)式(其中n為正整數(shù)).
(2)根據(jù)(1)的結(jié)論判斷66是三角形數(shù)嗎?若是請(qǐng)說(shuō)出66是第幾個(gè)三角形數(shù)?若不是請(qǐng)說(shuō)明理由.
(3)根據(jù)(1)的結(jié)論判斷所有三角形數(shù)的倒數(shù)之和T與2的大小關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星光櫥具店購(gòu)進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售,其進(jìn)價(jià)與售價(jià)如表:
進(jìn)價(jià)(元/臺(tái)) | 售價(jià)(元/臺(tái)) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購(gòu)進(jìn)這兩種電器共30臺(tái),用去了5600元,并且全部售完,問(wèn)櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場(chǎng)需求,二季度櫥具店決定用不超過(guò)9000元的資金采購(gòu)電飯煲和電壓鍋共50臺(tái),且電飯煲的數(shù)量不少于電壓鍋的,問(wèn)櫥具店有哪幾種進(jìn)貨方案?并說(shuō)明理由;
(3)在(2)的條件下,請(qǐng)你通過(guò)計(jì)算判斷,哪種進(jìn)貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,是上一點(diǎn),于點(diǎn),是的中點(diǎn),于點(diǎn),與交于點(diǎn),若,平分,連結(jié),.
(1)求證:;
(2)求證:.
(3)若,判定四邊形是否為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,E分別是x軸和y軸上的任意點(diǎn). BD是∠ABE的平分線,BD的反向延長(zhǎng)線與∠OAB的平分線交于點(diǎn)C.
探究: (1)求∠C的度數(shù).
發(fā)現(xiàn): (2)當(dāng)點(diǎn)A,點(diǎn)B分別在x軸和y軸的正半軸上移動(dòng)時(shí),∠C的大小是否發(fā)生變化?若不變,請(qǐng)直接寫出結(jié)論;若發(fā)生變化,請(qǐng)求出∠C的變化范圍.
應(yīng)用:(3)如圖2在五邊形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延長(zhǎng)線與∠EDC外角的平分線相交于點(diǎn)P,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A、H、B在一條直線上),并新修一條路CH,測(cè)得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)問(wèn)CH是否為從村莊C到河邊的最近路?(即問(wèn):CH與AB是否垂直?)請(qǐng)通過(guò)計(jì)算加以說(shuō)明;
(2)求原來(lái)的路線AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com