【題目】已知⊙O半徑為,AB是⊙O的一條弦,且AB=3,則弦AB所對(duì)的圓周角度數(shù)是_____.
【答案】60°或120°
【解析】
先根據(jù)題意畫出圖形,連接OA、OB,過(guò)O作OF⊥AB,由垂徑可求出AF的長(zhǎng),根據(jù)特殊角的三角函數(shù)值可求出∠AOF的度數(shù),由圓周角定理及圓內(nèi)接四邊形的性質(zhì)即可求出答案.
解:如圖所示,
連接OA、OB,過(guò)O作OF⊥AB,則AF=AB,∠AOF=∠AOB,
∵OA=,AB=3,
∴AF=AB=×3=,
∴sin∠AOF= ,
∴∠AOF=60°,
∴∠AOB=2∠AOF=120°,
∴優(yōu)弧AB所對(duì)圓周角=∠AOB=×120°=60°,
在劣弧AB上取點(diǎn)E,連接AE、EB,
∴∠AEB=180°-60°=120°.
故答案為:60°或120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B、C、D是⊙O上的四個(gè)點(diǎn),AB=BC,BD交AC于點(diǎn)E,連接CD、AD.
(1)求證:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線)于點(diǎn).
當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段和之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段和之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(4,3).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.
(2)直接寫出該拋物線開(kāi)口方向和頂點(diǎn)坐標(biāo).
(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交x軸于A、B兩點(diǎn),直線y=kx+b經(jīng)過(guò)點(diǎn)A,與這條拋物線的對(duì)稱軸交于點(diǎn)M(1,2),且點(diǎn)M與拋物線的頂點(diǎn)N關(guān)于x軸對(duì)稱.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點(diǎn)為C,已知P(x,y)為線段AC上一點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,交拋物線于點(diǎn)Q.求線段PQ的最大值及此時(shí)P坐標(biāo);
(3)在(2)的條件下,求△AQC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中點(diǎn)D為圓心,r為半徑作⊙D,如果點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,那么r可以。ā 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是原點(diǎn),兩點(diǎn)的坐標(biāo)分別為,.
(1)以點(diǎn)為位似中心,在軸的左側(cè)將擴(kuò)大為原來(lái)的兩倍(即新圖與原圖的相似比為),畫出圖形,并寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(2)如果內(nèi)部一點(diǎn)的坐標(biāo)為,寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com