【題目】已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高.

1)求證:AC·BCBE·CD;

2)已知CD6AD3、BD8,求⊙O的直徑BE的長.

【答案】(1)見解析;(2)

【解析】試題分析:(1欲證ACBC=BECD,可以證明ADC∽△ECB得出;

2O的直徑BE的長,ACBC=BECD可在Rt△ACDRt△BCD,根據(jù)已知條件求出BC,AC的長即可

試題解析:(1證明連接CE

BEO的直徑,∴∠ECB=90°

CDAB,∴∠ADC=90°,∴∠ECB=∠ADC

∵∠A=E(同弧所對的圓周角相等),∴△ADC∽△ECB, ACBC=BECD;

2CD=6,AD=3,BD=8BC===10,AC===

ACBC=BECD ×10=BE6,BE=,∴⊙O的直徑BE的長是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,平分邊于,邊于,若,,則平行四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A1,點B1、C1分別是B、C的對應(yīng)點.

1)請畫出平移后的A1B1C1(不寫畫法);

2)將A1B1C1繞點C1順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的A2B2C1(不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價與銷售價如表(二)所示:

類別

成本價(元/箱)

銷售價(元/箱)

25

35

35

48

求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?

(2)該商場售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點,BEAP,DFAP,垂足分別是點E、F.

(1)求證:EF=AE﹣BE;

(2)聯(lián)結(jié)BF,如課=.求證:EF=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6種型號)

根據(jù)以上信息,解答下列問題:

(1)該班共有 名學(xué)生,其中穿175型校服的學(xué)生有 名;

(2)在條形統(tǒng)計圖中,請把空缺部分補(bǔ)充完整;

(3)該班學(xué)生所穿校服型號的眾數(shù)為 型,中位數(shù)為 型.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC、BD相交于點O,AEBDE,若∠OAE=24°,則∠BAE的度數(shù)是( 。

A. 24° B. 33° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,AB=AC,點D 在底邊BC 上,AE=AD,連接 DE

1)如圖①,已知∠BAC=90°,∠BAD=60°,求 CDE 的度數(shù);

2)如圖①,已知∠BAC=90°,當(dāng)點D 在線段BC(點BC 除外)上運(yùn)動時,試探究∠BAD CDE 的數(shù)量關(guān)系;

3)如圖②,若 BAC90°,試探究∠BAD CDE 的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案