【題目】如圖,頂點為A,1)的拋物線經(jīng)過坐標(biāo)原點O,與x軸交于點B

(1)求拋物線對應(yīng)的二次函數(shù)的表達式;

(2)過BOA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;

(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標(biāo).

【答案】1y=x2+x;(2見解析;(3)點P的坐標(biāo)為(﹣0

【解析】試題分析:(1)用待定系數(shù)法求出拋物線解析式,(2)先求出直線OA對應(yīng)的一次函數(shù)的表達式為y=x.再求出直線BD的表達式為y=x2.最后求出交點坐標(biāo)C,D即可;

3)先判斷出C'Dx軸的交點即為點P,它使得△PCD的周長最小.作輔助線判斷出△C'PO∽△C'DQ即可.

試題解析:(1∵拋物線頂點為A,1),設(shè)拋物線解析式為y=ax2+1,將原點坐標(biāo)(0,0)在拋物線上0=a2+1

a=,∴拋物線的表達式為y=x2+x

2)令y=0 0=x2+x,x=0(舍),x=2

B點坐標(biāo)為:(2,0),設(shè)直線OA的表達式為y=kxA1)在直線OA,k=1k=,∴直線OA對應(yīng)的一次函數(shù)的表達式為y=x

BDAO,設(shè)直線BD對應(yīng)的一次函數(shù)的表達式為y=x+bB2,0)在直線BD,0=×2+b,b=2,∴直線BD的表達式為y=x2

得交點D的坐標(biāo)為(﹣,3),x=0,y=2C點的坐標(biāo)為(0,2),由勾股定理,OA=2=OC,AB=2=CD,OB=2=OD

在△OAB與△OCD, ,∴△OAB≌△OCD

3)點C關(guān)于x軸的對稱點C'的坐標(biāo)為(0,2),C'Dx軸的交點即為點P,它使得△PCD的周長最。

過點DDQy,垂足為Q,PODQ,∴△C'PO∽△C'DQ,,,PO=,∴點P的坐標(biāo)為(﹣,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜萬鐵路線上,一列列和諧號動車象一條條巨龍穿梭于恩施崇山峻嶺,大多地段橋梁與隧道交替相連如圖,勘測隊員在山頂P處測得山腳下隧道入口A點處的俯角為60°,隧道出口B點處的俯角為30°,一列動車以180km/h的速度自西向東行駛,當(dāng)車頭抵達入口A點處時,車尾C點處的俯角是45°,整個車身全部進入隧洞恰好用了4s鐘時間,求車身完全在隧道中運行的時間(結(jié)果精確到1秒,參考數(shù)據(jù):≈1.414,≈1.732 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程有兩個不相等的實數(shù)根x1,x2

1)求k的取值范圍;

2)如果,且k為整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個公共點.

)求m的取值范圍;

)若m取滿足條件的最小的整數(shù),

①寫出這個二次函數(shù)的表達式;

②當(dāng)n≤x≤1時,函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;

③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過原點O.設(shè)平移后的圖象對應(yīng)的函數(shù)表達式為y=a(x-h(huán))2 +k,當(dāng)x<2時,y隨x的增大而減小,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,過點于點,點在邊上,,連接

(1)求證:四邊形BFDE是矩形;

(2)CF=3,BE=5,AF平分∠DAB,求平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機小李某天下午運營全是在東西走向的人民大道上進行的,如果規(guī)定向東為正,向西為負,他這天下午行駛里程如下:單位:千米

+15, -3, +14,-11,+10,-12,+4,-15,+16,-18

1他將最后一名乘客送到目的地時,距下午出車地點是多少千米?

2若汽車耗油量為千米,這天下午共耗油多少升

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線AB交兩坐標(biāo)軸于Aa,0)、B0b)兩點,且a,b滿足等式:+b420,點P為直線AB上第一象限內(nèi)的一動點,過POP的垂線且與過B點且平行于x軸的直線相交于點Q,

1)求A,B兩點的坐標(biāo);

2)當(dāng)P點在直線AB上的第一象限內(nèi)運動時,APBQ的值變不變?如果不變,請求出這個定值;若變化請說明理由.

3)延長QO與直線AB交于點M.請判斷出線段APBM,PM三條線段構(gòu)成三角形的形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為1,點P為正方形內(nèi)一動點,若點M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點N,連結(jié)CM.

1如圖一,若點M在線段AB上,求證:AP⊥BN;AM=AN

2如圖二,在點P運動過程中,滿足△PBC∽△PAM的點M在AB的延長線上時,APBN和AM=AN是否成立?

是否存在滿足條件的點P,使得PC=?(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉行中國夢校園好聲音歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽。兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表;

(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊答案