精英家教網(wǎng)梯形ABCD中,AB∥DC,AD=BC,以AD為直徑的⊙O交AB于E,⊙O的切線EF交BC于F,求證:
(1)EF⊥BC;
(2)BF•BC=BE•AE.
分析:(1)根據(jù)已知利用切線的性質(zhì)可得到∠BEF+∠B=90°,即EF⊥BC;
(2)利用兩組角對應(yīng)相等的兩個三角形相似得到△ADE∽△BEF,再根據(jù)相似三角形的對應(yīng)邊成比例和AD=BC,即可得到BF•BC=BE•AE.
解答:精英家教網(wǎng)證明:(1)連接OE,
∵∠DEF+∠DEO=90°,∠ADE+∠OEA=90°,
∴∠DEF=∠OEA.
∵OA=OE,AD=BC,
∴∠OEA=∠A=∠B.
∴∠A=∠B=∠DEF.
∵∠DEF+∠BEF=90°,
∴∠BEF+∠B=90°.
∴EF⊥BC;

(2)∵∠A=∠B,∠AED=∠BFE=90°,
∴△ADE∽△BEF.
AD
BE
=
AE
BF

∵AD=BC,
BC
BE
=
AE
BF

∴BF•BC=BE•AE.
點(diǎn)評:此題考查了相似三角形的性質(zhì)與判定,切線的性質(zhì)等知識及其運(yùn)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在等腰梯形ABCD中,AB∥CD,AB<CD,AB=10,BC=3.
(1)如果M為AB上一點(diǎn),且滿足∠DMC=∠A,求AM的長;
(2)如果點(diǎn)M在AB邊上移動(點(diǎn)M與A,B不重合),且滿足∠DMN=∠A,MN交BC延長線于N,設(shè)AM=x,CN=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰梯形ABCD中,AB∥DC,∠A=60°,AD=DC=10,點(diǎn)E,F(xiàn)分別在AD,BC上,且AE=4,BF=x,設(shè)四邊形DEFC的面積為y,則y關(guān)于x的函數(shù)關(guān)系式是
 
(不必寫自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、梯形ABCD中,AB∥為AD中點(diǎn),S△BEC=2,則梯形ABCD的面積是
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,等腰梯形ABCD中,AB∥DC,AD=AB=BC=6,且∠D=60°,則DC=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知梯形ABCD中,AB∥CD,∠ABC=90°,CD=1.
(1)若BC=3,AD=AB,求∠A的余弦值;
(2)連接BD,若△ADB與△BCD相似,設(shè)cotA=x,AB=y,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案