【題目】如圖所示,在平面直角坐標(biāo)系中,已知一次函數(shù)y=x+1的圖象與x軸,y軸分別交于A,B兩點(diǎn),以AB為邊在第二象限內(nèi)作正方形ABCD.
(1)求邊AB的長;
(2)求點(diǎn)C,D的坐標(biāo);
(3)在x軸上是否存在點(diǎn)M,使△MDB的周長最。咳舸嬖,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)C(﹣1,3),D(﹣3,2);(3)M(﹣1,0).
【解析】
試題分析:(1)在直角三角形AOB中,由OA與OB的長,利用勾股定理求出AB的長即可;
(2)過C作y軸垂線,過D作x軸垂線,分別交于點(diǎn)E,F(xiàn),可得三角形CBE與三角形ADF與三角形AOB全等,利用全等三角形對應(yīng)邊相等,確定出C與D坐標(biāo)即可;
(3)作出B關(guān)于x軸的對稱點(diǎn)B′,連接B′D,與x軸交于點(diǎn)M,連接BD,BM,此時(shí)△MDB周長最小,求出此時(shí)M的坐標(biāo)即可.
解:(1)對于直線y=x+1,令x=0,得到y(tǒng)=1;令y=0,得到x=﹣2,
∴A(﹣2,0),B(0,1),
在Rt△AOB中,OA=2,OB=1,
根據(jù)勾股定理得:AB==;
(2)作CE⊥y軸,DF⊥x軸,可得∠CEB=∠AFD=∠AOB=90°,
∵正方形ABCD,
∴BC=AB=AD,∠DAB=∠ABC=90°,
∴∠DAF+∠BAO=90°,∠ABO+∠CBE=90°,
∵∠DAF+∠ADF=90°,∠BAO+∠ABO=90°,
∴∠BAO=∠ADF=∠CBE,
∴△BCE≌△DAF≌ABO,
∴BE=DF=OA=2,CE=AF=OB=1,
∴OE=OB+BE=2+1=3,OF=OA+AF=2+1=3,
∴C(﹣1,3),D(﹣3,2);
(3)找出B關(guān)于x軸的對稱點(diǎn)B′,連接B′D,與x軸交于點(diǎn)M,此時(shí)△BMD周長最小,
∵B(0,1),
∴B′(0,﹣1),
設(shè)直線B′D的解析式為y=kx+b,
把B′與D坐標(biāo)代入得:,
解得:,即直線B′D的解析式為y=﹣x﹣1,
令y=0,得到x=﹣1,即M(﹣1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將豎直放置的長方形磚塊ABCD推倒至長方形A'B'C'D'的位置,長方形ABCD的長和寬分別為a,b,AC的長為c.
(1)你能用只含a,b的代數(shù)式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA嗎?能用只含c的代數(shù)式表示S△ACA'嗎?
(2)利用(1)的結(jié)論,你能驗(yàn)證勾股定理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)10%,沒有其他贈(zèng)送.
(1)請寫出售價(jià)y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計(jì)算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1 cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),則(1)BP cm,BQ cm.(用含t的代數(shù)式表示)
(2)當(dāng)t為何值時(shí),△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(-4,0),B(2,6)兩點(diǎn).
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)在直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(3)求這個(gè)一次函數(shù)與坐標(biāo)軸圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,點(diǎn)E,F,G分別是BD,AC,DC的中點(diǎn).已知兩底之差是6,兩腰之和是12,則△EFG的周長是( )
A. 8 B. 9 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形內(nèi)接于,點(diǎn)P在弧BC上,PA與BC相交于點(diǎn)D,若PB=3,PC=6,則PD=( )
A. 1.5 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形的三個(gè)內(nèi)角中,最多有_________個(gè)直角,最多有_____________個(gè)鈍角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ,射線,且, ,點(diǎn)是線段(不與點(diǎn)、重合)上的動(dòng)點(diǎn),過點(diǎn)作交射線于點(diǎn),連結(jié).
()如圖,若,求證: ≌.
()如圖,若平分,試猜測和的數(shù)量關(guān)系,并說明理由.
()若是等腰三角形,作點(diǎn)關(guān)于的對稱點(diǎn),連結(jié),則__________.(請直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com