【題目】在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖,試確定線段AE與DB的大小關系,并說明理由”.
(1)當點E為AB的中點時,如圖1,確定線段AE與DB的大小關系,直接寫出結論:AE DB
(填“>”,“<”或“=”).
(2)證明你得出的以上(1),如圖2,過點E作EF∥BC,交AC于點F.
(3)在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED = EC.若△ABC的邊長為1,AE = 2,求CD的長.
【答案】(1)=;(2)見解析;(3) CD=1或3,理由見解析.
【解析】
(2)過E作EF∥BC交AC于F,根據題意證明△DEB≌△ECF,即可求解.
(3)根據點E在直線AB的位置不同進行分類討論,過A作AM⊥BC于M,過E作EN⊥BC于N,并證明△AMB∽△ENB,列出比例式求解即可.
解:(1)答案為:=.
(2)過E作EF∥BC交AC于F,在等邊三角形ABC中,
有∠ABC=∠ACB=∠A=60°,AB=AC=BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,
∴△AEF是等邊三角形,∴AE=EF=AF,
又∵∠ABC=∠ACB=∠AFE=60°,
∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,
又∵DE=EC,∴∠D=∠ECD,
∴∠BED=∠ECF,
在△DEB和△ECF中,
∠DEB=∠ECF,∠DBE=∠EFC,DE=CE,
∴△DEB≌△ECF,
∴BD=EF=AE,即AE=BD,故答案為:=.
(3)解:CD=1或3,
理由是:分為兩種情況:①如圖1
過A作AM⊥BC于M,過E作EN⊥BC于N,
則AM∥EN,
∵△ABC是等邊三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=BC=,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴△AMB∽△ENB,
∴=,
∴=,
∴BN=,
∴CN=1+=,
∴CD=2CN=3;
②如圖2,作AM⊥BC于M,過E作EN⊥BC于N,
則AM∥EN,
∵△ABC是等邊三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=BC=,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴=,
∴=,
∴MN=1,
∴CN=1﹣=,
∴CD=2CN=1,
即CD=3或1.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=12厘米, BC=8厘米,點D為AB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動;當點Q的運動速度為下列哪個值時,能夠在某一時刻使△BPD與△CQP全等( )
A. 2或3厘米/秒 B. 4厘米/秒 C. 3厘米/秒 D. 4或6厘米/秒
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)作出△ABC關于y軸對稱的△ABlCl;
(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:
如示意圖,小明邊移動邊觀察,發(fā)現站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A,E,C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB.(結果精確到0.1m)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,延長AB到點E,使BE=BC,在BC上取一點F,使BF=AB,連接EF,△ABC旋轉后能與△FBE重合,請回答:
(1)旋轉中心是點 , 旋轉的最小角度是度
(2)AC與EF的位置關系如何,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知等腰三角形的一邊長等于8cm,一邊長等于9cm,求它的周長;
(2)等腰三角形的一邊長等于6cm,周長等于28cm,求其他兩邊的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自主學習,請閱讀下列解題過程.
解一元二次不等式:x2﹣5x>0.
解:設x2﹣5x=0,解得:x1=0,x2=5,則拋物線y=x2﹣5x與x軸的交點坐標為(0,0)和(5,0).畫出二次函數y=x2﹣5x的大致圖象(如圖所示),由圖象可知:當x<0,或x>5時函數圖象位于x軸上方,此時y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集為:x<0或x>5.
通過對上述解題過程的學習,按其解題的思路和方法解答下列問題:
(1)上述解題過程中,滲透了下列數學思想中的和 . (只填序號)
①轉化思想 ②分類討論思想 ③數形結合思想
(2)一元二次不等式x2﹣5x<0的解集為 .
(3)用類似的方法寫出一元二次不等式的解集:x2﹣2x﹣3>0. .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知一次函數y=x+3的圖象與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c過A,B兩點,且與x軸交于另一點C.
(1)求b、c的值;
(2)如圖1,點D為AC的中點,點E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點M,求點M的坐標;
(3)將直線AB繞點A按逆時針方向旋轉15°后交y軸于點G,連接CG,如圖2,P為△ACG內一點,連接PA,PC,PG,分別以AP,AG為邊,在他們的左側作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當PA+PC+PG取得最小值時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c經過點A(2,0),B(0,2),點P是拋物線上一動點,連接BP,OP.
(1)求這條拋物線的解析式;
(2)若△BOP是以BO為底邊的等腰三角形,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com