【題目】如圖:在三角形ABC中,∠C=90°,AD是三角形ABC的角平分線,AB=AC+CD.
(1)求證:AC=BC;
(2)若BD=,求AB的長.
【答案】(1)見解析;(2)8+4.
【解析】
試題分析:(1)作DE⊥AB于E,則∠AED=∠BED=90°,由AAS證明△ADE≌△ADC,得出對應(yīng)邊相等ED=CD,AE=AC,由已知條件得出ED=EB,得出∠B=∠EDB=45°,證出△ABC是等腰直角三角形,即可得出結(jié)論;
(2)證出△BDE是等腰直角三角形,得出CD=ED=EB=BD=4,AC=BC=CD+BD=4+4,即可得出結(jié)論.
(1)證明:作DE⊥AB于E,則∠AED=∠BED=90°,
∵AD是三角形ABC的角平分線,
∴∠DAE=∠DAC,
在△ADE和△ADC中,
,
∴△ADE≌△ADC(AAS),
∴ED=CD,AE=AC,
∵AB=AC+CD=AE+EB,
∴CD=EB,
∴ED=EB,
∴∠B=∠EDB=45°,
∴∠BAC=45°,
∴△ABC是等腰直角三角形,
∴AC=BC;
(2)解:∵∠B=∠EDB=45°,∠BED=90°,
∴△BDE是等腰直角三角形,
∴CD=ED=EB=BD=4,
∴AC=BC=CD+BD=4+4,
∴AB=AC+CD=4+4+4=8+4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,OB=3OA,點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)A向右運(yùn)動.點(diǎn)N以每秒2個(gè)單位長度的速度從點(diǎn)O向右運(yùn)動(點(diǎn)M、點(diǎn)N同時(shí)出發(fā))
(1)數(shù)軸上點(diǎn)B對應(yīng)的數(shù)是______.
(2)經(jīng)過幾秒,恰好使AM=2BN?
(3)經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=﹣x2+bx+c的圖象過點(diǎn)(﹣1,﹣8),(0,﹣3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x﹣h)2+k的形式;
(2)畫出此函數(shù)圖象的示意圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)有理數(shù)相除,其商是負(fù)數(shù),則這兩個(gè)有理數(shù)( )
A. 都是負(fù)數(shù) B. 都是正數(shù)
C. 一個(gè)正數(shù)一個(gè)負(fù)數(shù) D. 有一個(gè)是零
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省荊州市第14題)若點(diǎn)M(k﹣1,k+1)關(guān)于y軸的對稱點(diǎn)在第四象限內(nèi),則一次函數(shù)y=(k﹣1)x+k的圖象不經(jīng)過第 象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com