【題目】如圖,已知拋物線y=x2﹣(m+3)x+9的頂點(diǎn)C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點(diǎn),與x、y軸分別交于D、E兩點(diǎn).

(1)求m的值;

(2)求A、B兩點(diǎn)的坐標(biāo);

(3)當(dāng)﹣3<x<1時(shí),在拋物線上是否存在一點(diǎn)P,使得△PAB的面積是△ABC面積的2倍?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)m=3;(2)點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(6,9); (3)存在,P( ).

【解析】試題分析:(1)由頂點(diǎn)在x軸上知它與x軸只有一個(gè)交點(diǎn),即對(duì)應(yīng)一元二次方程中△=0,可得關(guān)于m的方程,求解即可得m;

(2)聯(lián)立拋物線與直線解析式可得方程組,求解即可得A、B坐標(biāo);

(3)設(shè)點(diǎn)P(a,b),作PT⊥x軸交BD于點(diǎn)E,AR⊥x軸,BS⊥x軸,分別表示出AR、BS、RC、CS、RS、PT、RT、ST的長(zhǎng),根據(jù)S△ABC=S梯形ARSB﹣S△ARC﹣S△BCS求出S△ABC,由S△PAB=S梯形PBST﹣S梯形ABSR﹣S梯形ARTP表示出S△PAB,根據(jù)△PAB的面積是△ABC面積的2倍可得a、b間關(guān)系,代入拋物線解析式即可求得.

試題解析:(1)∵拋物線的頂點(diǎn)在x軸上,

∴它與x軸只有一個(gè)交點(diǎn),

∴(m+3)2﹣4×9=0,

解得m=3或m=﹣9,

又∵拋物線對(duì)稱軸大于0

∴﹣>0,即m>﹣3,

∴m=3;

(2)由(1)可得拋物的解析式為y=x2﹣6x+9,

解方程組 ,解得,

∴點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(6,9);

(3)存在,

設(shè)點(diǎn)P(a,b),如圖,作PT⊥x軸交BD于點(diǎn)E,AR⊥x軸,BS⊥x軸,

∵A(1,4),B(6,9),C(3,0),P(a,b)

∴AR=4,BS=9,RC=3﹣1=2,CS=6﹣3=3,RS=6﹣1=5,PT=b,RT=1﹣a,ST=6﹣a,

∴S△ABC=S梯形ARSB﹣S△ARC﹣S△BCS=×(4+9)×5﹣×2×4﹣×3×9=15,

S△PAB=S梯形PBST﹣S梯形ABSR﹣S梯形ARTP

=×(9+b)(6﹣a)﹣×(4+9)×5﹣×(b+4)(1﹣a)

=(5b﹣5a﹣15),

又∵S△PAB=2S△ABC,∴(5b﹣5a﹣15)=30,∴b﹣a=15,b=15+a,

∵點(diǎn)P在拋物線上∴b=a2﹣6a+9,∴15+a=a2﹣6a+9,

∴a2﹣7a﹣6=0,解得:a=,

∵﹣3<a<1,∴a=,∴b=15+a=,

∴P( ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(

A. 3(x-y)=3x-y B. (x+2)(x-2)=x2-2

C. (a+b)2=a2+b2 D. (x-y)2=x2-2xy+y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程2xa+30的解是x=﹣3,則a_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,E、F分別為矩形ABCD的邊ADBC上的點(diǎn),AE=CF.求證:BE=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點(diǎn)A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B、C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(anbm+43=a9b6,則mn=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會(huì)的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了   名學(xué)生;

(2)將圖1、圖2補(bǔ)充完整;

(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)有理數(shù)的和為正數(shù),積為負(fù)數(shù),則這兩個(gè)有理數(shù)( )
A.都是正數(shù)
B.一正一負(fù)
C.都是負(fù)數(shù)
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上的一點(diǎn),點(diǎn)C是的中點(diǎn),弦CM垂直AB于點(diǎn)F,連接AD,交CF于點(diǎn)P,連接BC,∠DAB=30°

(1)求∠ABC的度數(shù);

(2)若CM=8,求的長(zhǎng)度.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案