【題目】如圖,直線軸、軸分別交于,兩點,的中點,上一點,四邊形是菱形,則的面積為______.

【答案】8

【解析】

已知直線yx+8x軸、y軸分別交于A,B兩點, 可求得點A、B的坐標分別為:(8 ,0)、(0,8);又因 COB的中點, 可得點C04),所以菱形的邊長為4,根據(jù)菱形的性質(zhì)可得DE4DC,設點Dmm+8),則點Em,m+4),由兩點間的距離公式可得CD2m2+m+84216, 解方程求得m2, 即可得點E2,2), 再根據(jù)SOAE ×OA×yE即可求得的面積.

∵直線yx+8x軸、y軸分別交于AB兩點,

∴當x0時,y8;當y0時,x8

∴點A、B的坐標分別為:(8 ,0)、(08),

COB的中點,

∴點C0,4),

∴菱形的邊長為4,則DE4DC,

設點Dm,m+8),則點Em,m+4),

CD2m2+m+84216

解得:m2,

故點E2,2),

SOAE ×OA×yE×8×28 ,

故答案為8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校一幢教學大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i1:,AB=10,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點F,點EAB的延長線上,射線EM經(jīng)過點C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結果保留和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,點P從點B出發(fā),沿線段BA,向點A的速度勻速運動;點Q從點D出發(fā),沿線段DC向點C的速度勻速運動,已知兩點同時出發(fā),當一個點到達終點時,另一點也停止運動,設運動時間為

1)連結P、Q兩點,則線段PQ長的取值范圍是________;

2)當cm時,求t的值;

3)若在線段CD上有一點E,cm,連結ACPE.請問是否存在某一時刻使得AC平分PE?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步發(fā)展基礎教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元。2016年投入教育經(jīng)費8640萬元。假設該縣這兩年投入教育經(jīng)費的年平均增長率相同。

1求這兩年該縣投入教育經(jīng)費的年平均增長率;

2若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預算2017年該縣投入教育經(jīng)費多少萬元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=2x2+bx+c與直線y=﹣1只有一個公共點,且經(jīng)過A(m﹣1,n)和B(m+3,n),過點A,B分別作x軸的垂線,垂足記為M,N,則四邊形AMNB的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計,形狀均為正方形,邊長在10~30dm之間.每張畫板的成本價(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與畫板的大小無關,是固定不變的.浮動價與畫板的邊長成正比例.在營銷過程中得到了表格中的數(shù)據(jù).

畫板的邊長(dm)

10

20

出售價(元/張)

160

220

(1)求一張畫板的出售價與邊長之間滿足的函數(shù)關系式;

(2)已知出售一張邊長為30dm的畫板,獲得的利潤為130元(利潤=出售價-成本價),

①求一張畫板的利潤與邊長之間滿足的函數(shù)關系式;

②當邊長為多少時,出售一張畫板所獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCDAB6,AD8,將矩形ABCD繞點A順時針旋轉(zhuǎn)θθ360°)得到矩形AEFG,當θ_____°時,GCGB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為合理開展“體藝2+1”活動,隨機抽取部分學生進行問卷調(diào)查(每位學生只選擇一種自己喜歡的項目),并將調(diào)查的結果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

1)參加調(diào)查的學生有   人,在扇形統(tǒng)計圖中,表示 參加繪畫學生的扇形的圓心角為   

2)將條形統(tǒng)計圖補充完整;

3)若該中學有1 450名學生,則估計該中學喜歡籃球的學生共有多少人?

查看答案和解析>>

同步練習冊答案