【題目】如圖,某河大堤上有一顆大樹ED,小明在A處測得樹頂E的仰角為45°,然后沿坡度為1:2的斜坡AC攀行20米,在坡頂C處又測得樹頂E的仰角為76°,已知EDCD,并且CD與水平地面AB平行,求大樹ED的高度.(精確到1米)

(參考數(shù)據(jù):sin76°≈0.97,cos76°=0.24,tan76°≈4.01, =2.236)

【答案】12米

【解析】

解:過點D作DF⊥AB于點F,過點C作CG⊥AB于點G,

∵ED⊥CD,CD∥AB,
∴D、E、F三點共線,
∴四邊形CDFG是矩形,
∴CD=GF,DF=CG.
在Rt△ACG中,
∵坡度為1:2,
∴CG:AG=1:2,
∴AG:AC=2:
∵AC=20米,
∴AG=8 米,CG=4 米.
在Rt△CDE中,∠ECD=76°,設CD=x米,則ED=CDtan76°≈4.01x(米).
在Rt△EAF中,
∵∠EAF=45°,
∴EF=AF,即ED+DF=AG+GF,
∴4.01x+4 =8 +x,
∴x=2.99,
∴ED=4.01×2.99=12(米).
答:大樹ED的高約為12米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠=∠EAF,∠BAE,則∠CEF________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinABC8,點DAB的中點,過點BCD的垂線,垂足為點E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′, C的對應點 C′恰好落在CB的延長線上,邊AB交邊 C′D′于點E.

(1)求證:BC=BC′;

(2) AB=2,BC=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某路燈在鉛垂面內的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從DE兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一勞動節(jié)大酬賓!,某商場設計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”、“10”、“20“50的字樣.規(guī)定:在本商場同一日內,顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.

(1)該顧客至多可得到________元購物券;

(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 C、D 在線段 AB PCD 是等邊三角形,∠APB=120°

(1) 求證ACPPDB

(2) PC=3,AC=1,求 BD 的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在單位長度為1的正方形網(wǎng)格中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,完成下列問題:

(1)在圖中標出圓心D,則圓心D點的坐標為   

(2)連接AD、CD,則∠ADC的度數(shù)為   ;

(3)若扇形DAC是一個圓錐的側面展開圖,求該圓錐底面半徑.

查看答案和解析>>

同步練習冊答案