【題目】如圖,正比例函數(shù)y=kx與反比例函數(shù)y=(x>0)的圖象有個交點(diǎn)A,AB⊥x軸于點(diǎn)B.平移正比例函數(shù)y=kx的圖象,使其經(jīng)過點(diǎn)B(2,0),得到直線l,直線l與y軸交于點(diǎn)C(0,﹣3)
(1)求k和m的值;
(2)點(diǎn)M是直線OA上一點(diǎn)過點(diǎn)M作MN∥AB,交反比例函數(shù)y=(x>0)的圖象于點(diǎn)N,若線段MN=3,求點(diǎn)M的坐標(biāo).
【答案】(1),m=6 (2)(,)或(, )
【解析】
(1)利用待定系數(shù)法即可解決問題;(2)設(shè)點(diǎn)M(x,x),N(x,),利用MN//AB, MN=3,列方程求解即可.
(1)∵直線l與y軸交于點(diǎn)(0,-3),且過點(diǎn) B(2,0),
設(shè)直線l的解析式為y=ax-3,代入點(diǎn)B(2,0),解得a=,
∵直線l與正比例函數(shù)y=kx平行,∴k=a=,
∵y=x過點(diǎn) A,AB⊥x軸于點(diǎn)B,∴A(2,3)
∵y=過點(diǎn)A,∴m=6;
(2)設(shè)點(diǎn)M(x,x),N(x,),
∵M(jìn)N//AB, MN=3, ∴ x-=3,或x-=-3,
解得:,或(舍去負(fù)值),
∴點(diǎn)M的坐標(biāo)為(,)或(, )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對收費(fèi)作如下調(diào)整:一天中,同一個人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時,就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利? 說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直角梯形OABC中,CB∥OA,對角線OB和AC交于點(diǎn)D,OC=2,CB=2,OA=4,點(diǎn)P為對角線CA上的一點(diǎn),過點(diǎn)P作QH⊥OA于H,交CB的延長線于點(diǎn)Q,連接BP,如果△BPQ和△PHA相似,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是( 。
A. 若點(diǎn)(2,4)在其圖象上,則(﹣2,4)也在其圖象上
B. 當(dāng)k>0時,y隨x的增大而減小
C. 過圖象上任一點(diǎn)P作x軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=x和y=﹣x成軸對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測得D點(diǎn)的俯角β為30°,若旗桿底點(diǎn)G為BC的中點(diǎn),則矮建筑物的高CD為( )
A. 20米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天塔是天津市的標(biāo)志性建筑之一,某校數(shù)學(xué)興趣小組要測量天塔的高度,如圖,他們在點(diǎn)A處測得天塔最高點(diǎn)C的仰角為45°,再往天塔方向前進(jìn)至點(diǎn)B處測得最高點(diǎn)C的仰角為54°,AB=112m,根據(jù)這個興趣小組測得的數(shù)據(jù),計(jì)算天塔的高度CD(tan36°≈0.73,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從A出發(fā)沿AB以3cm/s的速度向點(diǎn)B移動,一直到達(dá)點(diǎn)B為止;同時,點(diǎn)Q從點(diǎn)C出發(fā)沿以2cm/s的速度向點(diǎn)D移動.經(jīng)過多長時間P、Q兩點(diǎn)的距離是10?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com