【題目】如圖,等邊三角形ABC的邊長為4, 點O是的中心, ∠FOG = 120°, 繞點O旋轉∠FOG,分別交線段AB、BC于D、 E兩點,連接DE,給出下列四個結論:①OD= OE;②;③四邊形ODBE的面積始終等于;④周長的最小值為6.上述結論中正確的有_________(寫出序號)
【答案】①③④
【解析】
連接OB、OC,如圖,利用等邊三角形的性質得∠ABO=∠OBC=∠OCB=30°,再證明∠BOD=∠COE,于是可判斷△BOD≌△COE,所以BD=CE,OD=OE,則可對①進行判斷;利用S△BOD=S△COE得到四邊形ODBE的面積=S△ABC=,則可對③進行判斷;作OH⊥DE,如圖,則DH=EH,計算出S△ODE=OE2,利用S△ODE隨OE的變化而變化和四邊形ODBE的面積為定值可對②進行判斷;由于△BDE的周長=BC+DE=4+DE=4+OE,根據(jù)垂線段最短,當OE⊥BC時,OE最小,△BDE的周長最小,計算出此時OE的長則可對④進行判斷.
解:連接OB、OC,如圖,
∵△ABC為等邊三角形,
∴∠ABC=∠ACB=60°,
∵點O是△ABC的中心,
∴OB=OC,OB、OC分別平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE,
在△BOD和△COE中
∴△BOD≌△COE,
∴BD=CE,OD=OE,所以①正確;
∴S△BOD=S△COE,
∴四邊形ODBE的面積=S△OBC==S△ABC==,所以③正確;
作OH⊥DE,如圖,則DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°,
∴OH=OE,HE=OH=OE,
∴DE=OE,
∴S△ODE=OEOE=OE2,
即S△ODE隨OE的變化而變化,
而四邊形ODBE的面積為定值,
∴S△ODE≠S△BDE;所以②錯誤;
∵BD=CE,
∴△BDE的周長=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,
當OE⊥BC時,OE最小,△BDE的周長最小,此時OE= ,
∴△BDE周長的最小值=4+2=6,所以④正確.
故答案為:①③④
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=﹣5x+5與x軸,y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸的另一交點為B.
(1)求拋物線解析式及B點坐標;
(2)若點M為x軸下方拋物線上一動點,連接MA、MB、BC,當點M運動到某一位置時,四邊形AMBC面積最大,求此時點M的坐標及四邊形AMBC的面積;
(3)如圖2,若P點是半徑為2的⊙B上一動點,連接PC、PA,當點P運動到某一位置時,PC+PA的值最小,請求出這個最小值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:①拋物線過點;②;③;④拋物線的頂點坐標為;⑤當時,隨增大而增大.其中結論錯誤的是( )
A.②③④B.②③⑤C.③⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,點.已知拋物線(是常數(shù)),頂點為.
(Ⅰ)當拋物線經(jīng)過點時,求頂點的坐標;
(Ⅱ)若點在軸下方,當時,求拋物線的解析式;
(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點.當時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將二次函數(shù)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與軸交于點、(點在點的左側),,經(jīng)過點的一次函數(shù)的圖象與軸正半軸交于點,且與拋物線的另一個交點為,的面積為5.
(1)求拋物線和一次函數(shù)的解析式;
(2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點E的坐標;
(3)若點為軸上任意一點,在(2)的結論下,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國傳統(tǒng)數(shù)學重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.《九章算術》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個圓柱截面示意圖(如圖②),其中BO⊥CD于點A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運用有關知識即可解決這個問題.請你補全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉60°,得到正方形DE′F′G′,此時點G′在AC上,連接CE′,則CE′+CG′=( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com