【題目】如圖,△ABC中,AB=AC, ∠BAC=90°,D是斜邊BC的中點(diǎn),E,F分別是AB,AC邊上的點(diǎn),且DE⊥DF.
(1)判斷DE和DF的數(shù)量關(guān)系,并說明理由;
(2)若BE=12,CF=5,求△DEF的面積。
【答案】(1)詳見解析;(2) .
【解析】
(1)連接AD,易證明△AED與△CFD全等,可得DE=DF
(2) ∵BE=12,CF=5,由△AED與△CFD全等可得AE=CF=5,AF=BE=12;在△AEF中,由勾股定理可得EF=13;在△DEF中,由勾股定理可得DE2=DF2;則△DEF的面積是亦可以求出
如圖,連接AD,
∵AB=AC,D為BC中點(diǎn)
∴AD⊥BC,AD=CD=BD
又∵DE⊥DF
∴∠CDF+∠ADF=∠EDA+∠ADF
即∠CDF=∠ADE
在△DCF與△DAE中
∵∠CDF=∠ADE
∠C=∠DAE
CD=AD
∴△DCF△DAE
∴DF=DE
(2)由(1)得:AE=CF=5, AF=BE=12
∵∠EAF=90°
∴
∴EF=13
又∵DE=DF,且DE⊥DF
∴
∴DE=DF=
∴=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,發(fā)生的概率是的是( )
A.從一副撲克牌中,任意抽取其中的一張,抽到紅桃的概率
B.一個(gè)圓盤被染成紅、黃、藍(lán)、紫四種顏色,隨機(jī)轉(zhuǎn)動(dòng)一次,轉(zhuǎn)盤停止時(shí),指針剛好指向紅色的概率
C.小明開車到十字路口時(shí),遇到紅燈的概率
D.一道單選題有四個(gè)備用選項(xiàng), 從中隨機(jī)選一個(gè)作答,答對(duì)的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,BE=CE,MN=1,線段MN的端點(diǎn)M,N分別在CD,AD上滑動(dòng),當(dāng)DM=______________時(shí),△ABE與以D,M,N為頂點(diǎn)的三角形相似。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD和△ACE中,有下列四個(gè)等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個(gè)條件為題設(shè),填入已知欄中,一個(gè)論斷為結(jié)論,填入下面求證欄中,使之組成一個(gè)真命題,并寫出證明過程.
已知: .
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB=90°,則OA+OB=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個(gè)等腰直角三角板放在黑板上畫好了的平面直角坐標(biāo)系內(nèi),如圖,已知直角頂點(diǎn)A的坐標(biāo)為(0,1),另一個(gè)頂點(diǎn)B的坐標(biāo)為(﹣5,5),則點(diǎn)C的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)F,過點(diǎn)F作DE∥BC,交AB于點(diǎn)D,交AC于點(diǎn)E,若BD=3.5,DE=6,則線段EC的長為( 。
A. 3B. 4C. 2D. 2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小歡和小麗都十分喜歡唱歌.她們兩人一起參加學(xué)校的文藝匯演.在匯演前,主持人讓她們自己確定出場順序,可她們倆爭著先出場,最后主持人想出了一個(gè)主意,說:“給你們五張卡片,每張卡片上都有一些數(shù).將化簡后的數(shù)在數(shù)軸上表示出來,再用“”連接起來,(連接化簡后的數(shù))誰先按照要求做對(duì),誰先出場”請(qǐng)你幫助她們解決這個(gè)問題.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com