【題目】如圖,已知點(diǎn)A,B,C在半徑為4的⊙O上,過點(diǎn)C作⊙O的切線交OA的延長(zhǎng)線于點(diǎn)D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點(diǎn)E,求:
①BE的長(zhǎng);
②四邊形ABCD的面積.
【答案】(1)∠D=32°;(2)①BE=;②
【解析】
(Ⅰ)連接OC, CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.
(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進(jìn)而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出
根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長(zhǎng);
②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進(jìn)行計(jì)算即可.
(Ⅰ)連接OC,
∵CD為切線,
∴OC⊥CD,
∴∠OCD=90°,
∵∠AOC=2∠ABC=29°×2=58°,
∴∠D=90°﹣58°=32°;
(Ⅱ)①連接OB,
在Rt△OCD中,∵∠D=30°,
∴∠DOC=60°,
∵∠BAO=15°,
∴∠OBA=15°,
∴∠AOB=150°,
∴∠OBC=150°﹣60°=90°,
∴△OBC為等腰直角三角形,
∴
∵
在Rt△CBE中,
∴
②作BH⊥OA于H,如圖,
∵∠BOH=180°﹣∠AOB=30°,
∴
∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,王老師在黑板上畫出一幅圖,并寫下了四個(gè)等式:
①,②,③,④.
(1)上述四個(gè)條件中,由哪兩個(gè)條件可以判定是等腰三角形?用序號(hào)寫出所有成立的情形.
(2)請(qǐng)選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為.
(1)建立如圖所示的平面直角坐標(biāo)系,若點(diǎn),則點(diǎn)的坐標(biāo)_______________;
(2)將向左平移個(gè)單位,向上平移個(gè)單位,則點(diǎn)的坐標(biāo)變?yōu)?/span>_____________;
(3)若將的三個(gè)頂點(diǎn)的橫縱坐標(biāo)都乘以,請(qǐng)畫出;
(4)圖中格點(diǎn)的面積是_________________;
(5)在軸上找一點(diǎn),使得最小,請(qǐng)畫出點(diǎn)的位置,并直接寫出的最小值是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PHCD;④,其中正確的是______(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線MN上,過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.
(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線MN的上方時(shí),
①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.
②猜測(cè)線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.
(2)將等腰直角△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并寫出證明過程.
(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫出FG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校八年級(jí)有800名學(xué)生,在體育中考前進(jìn)行一次排球模擬測(cè)試,從中隨機(jī)抽取部分學(xué)生,根據(jù)其測(cè)試成績(jī)制作了下面兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次抽取到的學(xué)生人數(shù)為________,圖2中的值為_________.
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是__________,眾數(shù)是________,中位數(shù)是_________.
(3)根據(jù)樣本數(shù)據(jù),估計(jì)我校八年級(jí)模擬體測(cè)中得12分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長(zhǎng)最大,求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線y=x2+x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))與y軸交于點(diǎn)C,直線BE⊥BC與點(diǎn)B,與拋物線的另一交點(diǎn)為E.
(1)如圖1,求點(diǎn)E的坐標(biāo);
(2)如圖2,若點(diǎn)P為x軸下方拋物線上一動(dòng)點(diǎn),過P作PG⊥BE與點(diǎn)G,當(dāng)PG長(zhǎng)度最大時(shí),在直線BE上找一點(diǎn)M,使得△APM的周長(zhǎng)最小,并求出周長(zhǎng)的最小值.
(3)如圖3,將△BOC在射線BE上,設(shè)平移后的三角形為△B′O′C′,B′在射線BE上,若直線B′C′分別與x軸、拋物線的對(duì)稱軸交于點(diǎn)R、T,當(dāng)△O′RT為等腰三角形時(shí),求R的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com