【題目】如圖1,直線分別交x軸、y軸于A、B兩點,點P是線段AB上的一動點,以P為圓心,r為半徑畫圓.

(1)若點P的橫坐標為﹣3,當⊙Px軸相切時,則半徑r ,此時⊙Py軸的位置關(guān)系是 .(直接寫結(jié)果)

(2)若,當⊙P與坐標軸有且只有3個公共點時,求點P的坐標.

(3)如圖2,當圓心PA重合,時,設點C為⊙P上的一個動點,連接OC,將線段OC繞點O順時針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長的最值并直接寫出對應的點D的坐標.

【答案】(1),相離,(2)PP;(3)當點D在線段AB上時,AD最小值為,D坐標為,當點D在線段AB的延長線上時,AD最大值為,D坐標為

【解析】

(1)根據(jù)坐標軸上點的坐標特征求出A點和B點的坐標,根據(jù)相似三角形的性質(zhì)解答;

(2)根據(jù)直線與圓的位置關(guān)系解答;

(3)連接AC,BD,證明AOC≌△BOD,求出BD的長,得到AD最長或最短距離,根據(jù)直角三角形的性質(zhì)求出點D的坐標.

1)當x=0,y=4, y=0時,x=-4,

A點的坐標為(-4,0),B點的坐標為(0,4),

N為⊙Px軸的切點,連接PN,

PNOB,

,,

解得,PN=1,

x+4=1,

解得,x=3,

3>1,

∴⊙Py軸的位置關(guān)系是相離,

故答案為:1;相離;

(2)r=,Px軸相切時,

=x+4,x=,

則⊙Py軸相交,

此時點P的坐標為(,),

r=,Py軸相切時,

y=+4=,

Px軸相交,

此時點P的坐標為(-,);

(3)連接AC、BD,

∵∠COD=AOB=90°

∴∠COA=DOB

易證AOC≌△BOD

BD=AC=2

∴點D的運動軌跡是以點B為圓心,2為半徑的圓,

當點D在線段AB上時,AD最小值為,D坐標為 ;

當點D在線段AB的延長線上時,AD最大值為,D坐標為 .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以線段AC的兩個端點A,C為圓心,大于AC的長為半徑畫弧,兩弧相交于B,D兩點,連接BD,AB,BC,CD,DA,以下結(jié)論:

①BD垂直平分AC

②AC平分∠BAD;

③AC=BD;

四邊形ABCD是中心對稱圖形.

其中正確的有( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,∠ABC的平分線交AD于點E,∠BED的平分線交DC于點F,若AB=6,點F恰為DC的中點,則BC=(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一組數(shù),按照下列規(guī)律排列:

1,

2,3,

6,5,4,

7,8,9,10,

15,14,13,12,11,

16,17,18,19,20,21,

……

數(shù)字5在第三行左數(shù)第二個,我們用(3,2)點示5的位置,那點這組成數(shù)里的數(shù)字100的位置可以表示為( 。

A. (14,9) B. (14,10) C. (14,11) D. (14,12)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由12個形狀、大小完全相同的小矩形組成一個大的矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,已知這個大矩形網(wǎng)格的寬為4,△ABC的頂點都在格點.

(1)求每個小矩形的長與寬;
(2)在矩形網(wǎng)格中找出所有的格點E,使△ABE為直角三角形;(描出相應的點,并分別用E1 , E2…表示)
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校實施課程改革,為初三學生設置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機抽取若干學生進行了“我最想選的一門課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表(不完整)

選修課

A

B

C

D

E

F

人數(shù)

20

30

根據(jù)圖標提供的信息,下列結(jié)論錯誤的是(

A.這次被調(diào)查的學生人數(shù)為200人
B.扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C.被調(diào)查的學生中最想選F的人數(shù)為35人
D.被調(diào)查的學生中最想選D的有55人

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的兩條高線BD,CE相交于點F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為(
A.20
B.25
C.30
D.40

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由12個形狀、大小完全相同的小矩形組成一個大的矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,已知這個大矩形網(wǎng)格的寬為4,△ABC的頂點都在格點.

(1)求每個小矩形的長與寬;
(2)在矩形網(wǎng)格中找出所有的格點E,使△ABE為直角三角形;(描出相應的點,并分別用E1 , E2…表示)
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙A切y軸于點B,且點A在反比例函數(shù)y= (x>0)的圖象上,連接OA交⊙A于點C,且點C為OA中點,則圖中陰影部分的面積為(
A.4
B.4
C.2
D.2

查看答案和解析>>

同步練習冊答案