【題目】如圖,在Δ中,∠=,在同一平面內,現(xiàn)將Δ圍繞點旋轉,使得點落在點,點落在點,如果∥那么∠=______
【答案】40°
【解析】
先根據(jù)平行線的性質,由CC′∥AB得∠ACC′=∠CAB=70°,再根據(jù)旋轉的性質得AC=AC′,∠BAB′=∠CAC′,于是根據(jù)等腰三角形的性質有∠ACC′=∠AC′C=70°,然后利用三角形內角和定理可計算出∠CAC′=40°,從而得到∠BAB′的度數(shù).
解:∵CC′∥AB,
∴∠ACC′=∠CAB=70°,
∵△ABC繞點A旋轉到△AB′C′的位置,
∴AC=AC′,∠BAB′=∠CAC′,
在△ACC′中,∵AC=AC′,
∴∠AC'C=∠ACC'=70°,
∴∠CAC′=180°-70°-70°=40°,
∴∠BAB′=40°.
故答案為:40°.
科目:初中數(shù)學 來源: 題型:
【題目】在菱形中,,是對角線上一點,是線段延長線上一點,且,連接、.
若是線段的中點,如圖,易證:(不需證明);
若是線段或延長線上的任意一點,其它條件不變,如圖、圖,線段、有怎樣的數(shù)量關系,直接寫出你的猜想;并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù),則下列關于該函數(shù)的描述中,錯誤的是( )
A. 該函數(shù)的最小值是
B. 該函數(shù)圖象與軸沒有交點
C. 該函數(shù)圖象與軸有兩個不同的交點
D. 當時,隨著的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),將線段BC繞點B逆時針旋轉60°得到線段BD.
(1)如圖1,直接寫出∠ABD的大小(用含α的式子表示);
(2)如圖2,若∠BCE=150°,∠ABE=60°, ∠DEC=45°,求α的值;
(3)如圖3,若∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,垂直,AB=6,Δ是等邊三角形,點在射線上運動,以為邊向右上方作等邊Δ,射線與射線交于點.
(1)如圖1,當點運動到與點成一條直線時, (填長度),∠ 度.
(2)在圖2中,①求證:∠;
②隨著點的運動,∠的度數(shù)是否發(fā)生改變?若不變,求出這個角的度數(shù);若改變,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在某場足球比賽中,球員甲從球門底部中心點的正前方處起腳射門,足球沿拋物線飛向球門中心線;當足球飛離地面高度為時達到最高點,此時足球飛行的水平距離為.已知球門的橫梁高為.
在如圖所示的平面直角坐標系中,問此飛行足球能否進球門?(不計其它情況)
守門員乙站在距離球門處,他跳起時手的最大摸高為,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠才能阻止球員甲的射門?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我縣某商場計劃購進甲、乙兩種商品共80件,這兩種商品的進價、售價如表所示:
進價(元/件) | 售價(元/件) | |
甲種商品 | 15 | 20 |
乙種商品 | 25 | 35 |
設其中甲種商品購進x件,售完此兩種商品總利潤為y元.
(1)寫出y與x的函數(shù)關系式.
(2)該商場計劃最多投入1500元用于購進這兩種商品共80件,則至少要購進多少件甲種商品?若售完這些商品,商場可獲得的最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com