在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=-
14
x2
+bx+c的圖象經(jīng)過點(diǎn)A(4精英家教網(wǎng),0)、C(0,2).
(1)試求這個(gè)二次函數(shù)的解析式,并判斷點(diǎn)B(-2,0)是否在該函數(shù)的圖象上;
(2)設(shè)所求函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)E在x軸上,若以點(diǎn)C、D、E為頂點(diǎn)的三角形與△ABC相似,試求點(diǎn)E的坐標(biāo).
分析:(1)將點(diǎn)A(4,0)、C(0,2)的坐標(biāo)代入次函數(shù)y=-
1
4
x2
+bx+c,即可求得拋物線的解析式,再將B(-2,0)坐標(biāo)代入拋物線的解析式即可知道它是否在該函數(shù)的圖象上;
(2)先求出D 點(diǎn)坐標(biāo),再根據(jù)題中已知條件便可求出點(diǎn)E的坐標(biāo).
解答:解:(1)點(diǎn)A(4,0)、C(0,2)的坐標(biāo)代入次函數(shù)y=-
1
4
x2
+bx+c;
可得
-
1
4
×16+4b+c=0
c=2
,
解得
b=
1
2
c=2
,
∴二次函數(shù)的解析式為y=-
1
4
x2
+
1
2
x+2;
將B(-2,0)坐標(biāo)代入拋物線的解析式y(tǒng)=-
1
4
x2
+
1
2
x+2可得-
1
4
×4+
1
2
×(-2)+2=0,
點(diǎn)B(-2,0)在該函數(shù)的圖象上;
精英家教網(wǎng)
(2)拋物線y=-
1
4
x2
+
1
2
x+2的對(duì)稱軸為x=-
b
2a
=1,
∴D點(diǎn)坐標(biāo)為D(1,0),CD=
5
,
∵點(diǎn)E在x軸上,
設(shè)E點(diǎn)坐標(biāo)為E(x,0),
由題意可知AB=4+2=6,AC=2
5
,BC=2
2

①當(dāng)△ABC∽△CDE時(shí),∴
AB
CD
=
BC
DE
6
5
=
2
2
DE
,
解得DE=
10
3

∵D點(diǎn)坐標(biāo)為(1,0),
∴E點(diǎn)坐標(biāo)為(-
10
3
+1,0).
②當(dāng)△ABC∽△CED時(shí),
AB
CE
=
BC
ED
,即
6
CE
=
2
2
DE
,∴
6
x2+4
=
2
2
|1-x|
,
解得,x=
74
7
,
∴點(diǎn)E的坐標(biāo)為(
9+
74
7
,0),(
9-
74
7
,0);
③當(dāng)△ABC∽△DEC時(shí),
AB
DE
=
BC
EC
,即
6
|1-x|
=
2
2
x2+4
,
解得,x=
-2±
277
7
,∴點(diǎn)E的坐標(biāo)為(
-2+
277
7
,0),(
-2-
277
7
,0).
點(diǎn)評(píng):本題是二次函數(shù)的綜合題,其中涉及到的知識(shí)點(diǎn)有拋物線的公式的求法和等腰三角形的性質(zhì)及三角形的相似等知識(shí)點(diǎn),是各地中考的熱點(diǎn)和難點(diǎn),解題時(shí)注意數(shù)形結(jié)合數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡(jiǎn)捷的解題策略?請(qǐng)說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案