【題目】某路公交車從起點出發(fā),經(jīng)過A、B、C三站到達(dá)終點,途中上下乘客如下表所示.(正數(shù)表示上車的人數(shù),負(fù)數(shù)表示下車的人數(shù))
上(下)車 | 起點 | A | B | C | 終點 |
上車的人數(shù) | 10 | 9 | 6 | 5 | 0 |
下車的人數(shù) | 0 | ﹣2 | ﹣5 | ﹣6 | ? |
(1)表格中“?”應(yīng)填 .
(2)車行駛在哪兩站之間時,車上的乘客最多? 站和 站;
(3)若每人乘坐一站需要買票1元,則該車出車一次能收入多少錢?要求寫出計算過程.
【答案】(1)-17;(2)B,C;(3)62.
【解析】
(1)根據(jù)表格列出式子,再根據(jù)有理數(shù)的運算求解即可得;
(2)分別計算出起點、A、B、C、終點的人數(shù),再比較大小即可;
(3)計算出起點、A、B、C、終點的人數(shù),每站的人數(shù)乘以1為該站人數(shù)的票價,將所有站的票價求和即可.
由表格可得車上的人數(shù)如下:
起點到A站:10人
A站到B站:人
B站到C站:人
C站到終點:人
終點:人
故(1)表格中“?”應(yīng)填;
(2)應(yīng)填:B站、C站;
(3)從起點開始算,可收的錢為元.
答:該車出車一次能收入62元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了提高學(xué)生跳遠(yuǎn)科目的成績,對全校500名九年級學(xué)生開展了為期一個月的跳遠(yuǎn)科目強化訓(xùn)練.王老師為了了解學(xué)生的訓(xùn)練情況,強化訓(xùn)練前,隨機抽取了該年級部分學(xué)生進(jìn)行跳遠(yuǎn)測試,經(jīng)過一個月的強化訓(xùn)練后,再次測得這部分學(xué)生的成績,將兩次測得的成績制作成如圖所示的統(tǒng)計圖和不完整的統(tǒng)計表
訓(xùn)練后學(xué)生成績統(tǒng)計表
成績/分?jǐn)?shù) | 6分 | 7分 | 8分 | 9分 | 10分 |
人數(shù)/人 | 1 | 3 | 8 | 5 | n |
根據(jù)以上信息回答下列問題
(1)訓(xùn)練后學(xué)生成績統(tǒng)計表中n= ,并補充完成下表:
平均分 | 中位數(shù) | 眾數(shù) | |
訓(xùn)練前 | 7.5 | 8 | |
訓(xùn)練后 | 8 |
(2)若跳遠(yuǎn)成績9分及以上為優(yōu)秀,估計該校九年級學(xué)生訓(xùn)練后比訓(xùn)練前達(dá)到優(yōu)秀的人數(shù)增加了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中且,又、為的三等分點.
(1)求證;
(2)證明:;
(3)若點為線段上一動點,連接則使線段的長度為整數(shù)的點的個數(shù)________.(直接寫答案無需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,AB=AC=AD,∠DAC=∠ABC.
(1)求證:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且.
則________,________;并將這兩個數(shù)在數(shù)軸上所對應(yīng)的點,表示出來;
數(shù)軸上在點右邊有一點到、兩點的距離和為,若點的數(shù)軸上所對應(yīng)的數(shù)為,求的值;
若點,點同時沿數(shù)軸向正方向運動,點運動的速度為單位/秒,點運動的速度為單位/秒,若,求運動時間的值.
(溫馨提示:、之間距離記作,點、在數(shù)軸上對應(yīng)的數(shù)分別為、,則.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC.D,E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2.
其中正確的是( )
A.②④ B.①④ C.②③ D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AH是⊙O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為直徑OH上一點,點E、F分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若CD=10,EB=5,求⊙O的直徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com