【題目】寬與長的比是(約為0.618)的矩形叫做黃金矩形,黃金矩形蘊藏著豐富的美學價值,給我們以協(xié)調和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:如圖,作正方形ABCD,分別取AD,BC的中點E,F,連接EF,DF,作∠DFC的平分線,交AD的延長線于點H,作HG⊥BC,交BC的延長線于點G,則下列矩形是黃金矩形的是( 。
A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH
科目:初中數學 來源: 題型:
【題目】(本小題滿分9分)
為了考察甲、乙兩種成熟期小麥的株高長勢狀況,現從中各隨機抽取6株,并測得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(1)請分別計算表內兩組數據的方差,并借此比較哪種小麥的株高長勢比較整齊?
(2)現將進行兩種小麥優(yōu)良品種雜交試驗,需從表內的甲、乙兩種小麥中,各隨機抽取一株進行配對,以預估整體配對狀況.請你用列表法或畫樹狀圖的方法,求所抽取的兩株配對小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小強騎車從家到學校要經過一段先上坡后下坡的路,在這段路上小強騎車的距離s(千米)與騎車的時間t(分鐘)之間的函數關系如圖所示,請根據圖中信息回答下列問題:
(1)小強去學校時下坡路長 千米;
(2)小強下坡的速度為 千米/分鐘;
(3)若小強回家時按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車走這段路的時間是 分鐘.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市城建公司新建了一個購物中心,共有商鋪30間,據調查分析,當每間的年租金為10萬元時,可全部租出:若每間的年租金每增加0.5萬元,則少租出商鋪一間,為提供優(yōu)質服務,城建公司引入物業(yè)公司代為管理,租出的商鋪每間每年需向物業(yè)公司繳納物業(yè)費1萬元,未租出的商鋪不需要向物業(yè)公司繳納物業(yè)費.
(1)當每間商鋪的年租金定為13萬元時,能租出 間.
(2)當每問商鋪的年租金定為多少萬元時,該公司的年收益為286萬元,且使租客獲得實惠?(收益=租金﹣物業(yè)費)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于點F.
(1)求證:△ABE∽△DEF;
(2)求CF的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數 y=ax+bx+c(a≠0)的圖象如圖所示,A(﹣ 1,3)是拋物線的頂點,則以下結論中正確的是( )
A. a<0,b>0,c>0
B. 2a+b=0
C. 當 x<0 時,y 隨 x 的增大而減小
D. ax2+bx+c﹣3≤0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并按要求解答.
(模型介紹)
如圖①,C是線段A、B上一點E、F在AB同側,且∠A=∠B=∠ECF=90°,看上去像一個“K“,我們稱圖①為“K”型圖.
(性質探究)
性質1:如圖①,若EC=FC,△ACE≌△BFC
性質2:如圖①,若EC≠FC,△ACE~△BFC且相似比不為1.
(模型應用)
應用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.
應用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AH⊥BC,連接EF.交AH的反向延長線于點K,證明:K為EF中點.
(1)請你完成性質1的證明過程;
(2)請分別解答應用1,應用2提出的問題.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com