精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形中,中點,過點的直線分別與,交于點,,連接于點,連接.若,,則下列結論:

,;

;

四邊形是菱形;

其中正確結論的個數是(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

證明△OBC是等邊三角形,即可得OB=BC,FO=FC,即可得FB垂直平分OC,①正確;②由FB垂直平分OC,根據軸對稱的性質可得△FCB≌△FOB,根據全等三角形的性質可得∠BCF=∠BOF=90°,再證明△FOC≌△EOA,所以FO=EO,即可得OB垂直平分EF,所以△OBF≌△OBE,△EOB≌△FCB,②錯誤;③證明四邊形DEBF是平行四邊形,再由OB垂直平分EF,根據線段垂直平分線的性質可得BE=BF,即可得平行四邊形DEBF為菱形,正確;OBF≌△EOB≌△FCB得∠1=∠2=∠3=30°,在Rt△OBE中,可得OE =OB,在Rt△OBM中,可得BM=OB,即可得BM :OE =3:2,④正確.

①∵矩形ABCD中,OAC中點,

∴OB=OC,

∵∠COB=60°,

∴△OBC是等邊三角形,

∴OB=BC,

∵FO=FC,

∴FB垂直平分OC,

∴FB⊥OC,OM=CM;

①正確;

②∵FB垂直平分OC,

根據軸對稱的性質可得△FCB≌△FOB,

∴∠BCF=∠BOF=90°,即OB⊥EF,

∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,

∴△FOC≌△EOA,

∴FO=EO,

∴OB垂直平分EF,

∴△OBF≌△OBE,

∴△EOB≌△FCB,

錯誤

③∵△FOC≌△EOA,

∴FC=AE,

矩形ABCD,

∴CD=AB,CD∥AB,

∴DF∥EB,DF=EB,

∴四邊形DEBF是平行四邊形,

∵OB垂直平分EF,

∴BE=BF,

∴平行四邊形DEBF為菱形;

③正確;

OBF≌△EOB≌△FCB得∠1=∠2=∠3=30°,

Rt△OBE中,OE =OB,

Rt△OBM中,BM=OB,

∴BM :OE =OB:=OB=3:2.

正確;

所以其中正確結論的個數為3個;

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點DAB的中點;

(2)判斷DE⊙O的位置關系,并證明你的結論;

3)若O的直徑為18,cosB=,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合與實踐

問題解決:

如圖1,已知正方形,,把含)的直角三角板的一個銳角頂點和點重合,三角板和正方形的兩邊分別相交于,兩點.

1)當時,求的長;

探究發(fā)現(xiàn):

2)在圖1的基礎上,試探究,,有怎樣的數量關系,請寫出猜想,并給予證明.

類比延伸:

3)如圖2,若三角板和正方形,兩邊的延長線分別相交于兩點,請直接寫出,,存在的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知OA=12厘米,OB=6厘米.點P從點O開始沿OA邊向點A1厘米/秒的速度移動;點Q從點B開始沿BO邊向點O1厘米/秒的速度移動.如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6),那么,當t為何值時,POQAOB相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分輸入漢字的個數統(tǒng)計結果如下表:

班級

參加人數

中位數

方差

平均數

55

149

1.91

135

55

151

1.10

135

某同學分析上表后得到如下結論:

①甲、乙兩班學生平均成績相同;

②乙班優(yōu)秀的人數多于甲班優(yōu)秀的人數(每分輸入漢字個數為優(yōu)秀)

③甲班成績的波動比乙班大.

上述結論中正確的是( )

A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司有A、B兩種型號的客車共11輛,它們的載客量(不含司機)、日租金、車輛數如下表所示,已知這11輛客車滿載時可搭載乘客350人.

A型客車

B型客車

載客量(人/輛)

40

25

日租金(元/輛)

320

200

車輛數(輛)

a

b

1)求a、b的值;

2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費用不超過1700元.

①最多能租用A型客車多少輛?

②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時測得小船C的俯角是∠FDC=30°.若小華的眼睛與地面的距離是米,BG=1.5米,BG平行于AC所在的直線,迎水坡i=43,坡長AB=10米,點A、B、C、D、F、G在同一平面內,則此時小船C到岸邊的距離CA的長是多少?(結果保留根號)

查看答案和解析>>

同步練習冊答案