【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結(jié)束運動.
(1)點P到達終點O的運動時間是 s,此時點Q的運動距離是 cm;
(2)當運動時間為2s時,P、Q兩點的距離為 cm;
(3)請你計算出發(fā)多久時,點P和點Q之間的距離是10cm;
(4)如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連結(jié)AC,與PQ相交于點D,若雙曲線y=過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.
【答案】(1),;(2);(3)t=或t=;(4).
【解析】
(1)先求出OA,進而求出時間,即可得出結(jié)論;
(2)構(gòu)造出直角三角形,再求出PE,QE,利用勾股定理即可得出結(jié)論;
(3)同(2)的方法利用勾股定理建立方程求解即可得出結(jié)論;
(4)先求出直線AC解析式,再求出點P,Q坐標,進而求出直線PQ解析式,聯(lián)立兩解析式即可得出結(jié)論.
(1)∵四邊形AOCB是矩形,
∴OA=BC=16,
∵動點P從點A出發(fā),以3cm/s的速度向點O運動,
∴t=,此時,點Q的運動距離是×2=cm;
(2)如圖1,由運動知,AP=3×2=6cm,CQ=2×2=4cm,
過點P作PE⊥BC于E,過點Q作QF⊥OA于F,
∴四邊形APEB是矩形,
∴PE=AB=6,BE=6,
∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,
根據(jù)勾股定理得,PQ=6;
(3)設運動時間為t秒時,
由運動知,AP=3t,CQ=2t,
同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,
∵點P和點Q之間的距離是10cm,
∴62+(16﹣5t)2=100,
∴t=或t=;
(4)k的值是不會變化,
理由:∵四邊形AOCB是矩形,
∴OC=AB=6,OA=16,
∴C(6,0),A(0,16),
∴直線AC的解析式為y=﹣x+16①,
設運動時間為t,
∴AP=3t,CQ=2t,
∴OP=16﹣3t,
∴P(0,16﹣3t),Q(6,2t),
∴PQ解析式為y=x+16﹣3t②,
聯(lián)立①②解得,x=,y=,
∴D(,),
∴k=×=是定值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個大小一樣的直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=10,DH=4,平移距離為6,則陰影部分面積是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.
已知:直線及直線外一點.
求作:,使得.
作法:如圖,
①在直線上取一點,作射線,以點為圓心,長為半徑畫弧,交的延長線于點;
②在直線上取一點(不與點重合),作射線,以點為圓心,長為半徑畫弧,交的延長線于點;
③作直線.
所以直線就是所求作的直線.
根據(jù)小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵_______,_______,
∴(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,動點P按圖中箭頭所示方向從原點出發(fā),第1次運動到P1(1,1),第2次接著運動到點P2(2,0),第3次接著運動到點P3(3,-2),…,按這的運動規(guī)律,點P2019的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC,點A的坐標是(4,0),點B的坐標是(2,3),點C在x軸的負半軸上,且AC=6.
(1)直接寫出點C的坐標.
(2)在y軸上是否存在點P,使得S△POB=S△ABC若存在,求出點P的坐標;若不存在,請說明理由.
(3)把點C往上平移3個單位得到點H,作射線CH,連接BH,點M在射線CH上運動(不與點C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解學生上學的交通方式,現(xiàn)從全校學生中隨機抽取了部分學生進行“我上學的交通方式”問卷調(diào)查,規(guī)定每人必須并且只能在“乘車”、“步行”、“騎車”和“其他”四項中選擇一項,并將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
請解答下列問題:
(1)在這次調(diào)查中,該學校一共抽樣調(diào)查了 名學生;
(2)補全條形統(tǒng)計圖;
(3)若該學校共有1500名學生,試估計該學校學生中選擇“步行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC,如圖,過點A作AF⊥AB,并截取AF=BD,連接DC、DF、CF.
(1)求證:△FAD≌△DBC;
(2)判斷△CDF的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設,.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請在圖2的方格中畫出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實線)
(2)若要用大小相同的小立方塊搭一個幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫的形狀圖相同,則搭這樣的一個幾何體最多需要 個小立方塊.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com