【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形。類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
(1)請你寫出一個等對邊四邊形的名稱;
(2)如圖,在△ABC中,點D、E分別在AB、AC上,設(shè)CD、BE相交于點O,若∠A=50°,.請寫出圖中其余等于50°的角,并猜想圖中哪個四邊形為等對邊四邊形(不需證明);
(3)在中,如果∠A是不等于50°的銳角,點D、E分別在AB、AC上,且.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.
【答案】(1)平行四邊形;(2)∠BOD=50°,∠COE=50°,猜想:四邊形DBCE是等對邊四邊形;(3)存在等對邊四邊形DBCE,證明見解析.
【解析】
(1)根據(jù)等對邊四邊形的定義即可得出答案;
(2)根據(jù)三角形外角的性質(zhì)可得∠BOD=50°,根據(jù)對頂角的性質(zhì)可得∠COE=50°;猜想四邊形DBCE是等對邊四邊形;
(3)作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.易證△BCF≌△CBG,進而證明△BDF≌△CEG,所以BD=CE,所以四邊形DBCE是等對邊四邊形.
解:(1)平行四邊形,
∵平行四邊形有兩組對邊相等,
∴平行四邊形是等對邊四邊形;
(2)∠BOD=50°,∠COE=50°,
∵∠A=50°,
∵∠BOD=∠OBC+∠OCB=25°+25°=50°,
∴∠COE=50°,
猜想:四邊形DBCE是等對邊四邊形(證明過程見第三問);
(3)存在等對邊四邊形DBCE.
證明:如圖,作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.
∵∠DCB=∠EBC=∠A,BC為公共邊,
∴△BCF≌△CBG,
∴BF=CG,
∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,
∴∠BDF=∠BEC,
∴△BDF≌△CEG,
∴BD=CE,
∴四邊形DBCE是等對邊四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD,CD分別是△ABC兩個外角的平分線.
(1)求證:∠ACD=∠ADC;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如圖所示將Rt△ABC沿直線l無滑動地滾動至Rt△DEF,則點B所經(jīng)過的路徑與直線l所圍成的封閉圖形的面積為_____.(結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC為等邊三角形,點D,E為直線BC上兩動點,且BD=CE. 點F,點E關(guān)于直線AC成軸對稱,連接AE,順次連接A,D,F.
(1)如圖1,若點D,點E在邊BC上,試判斷△ADF的形狀并說明理由;
(2)如圖2,若點D,點E在邊BC外,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A7B7A8的邊長為( 。
A. 64B. 32C. 16D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、C的坐標分別為A(7,0),C(0,4),點D的坐標為(5,0),點P在BC邊上運動. 當△ODP是腰長為5的等腰三角形時,點P的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,5),點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(即:沿著長方形移動一周)
(1)寫出點B的坐標( , );
(2)當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標;
(3)在移動過程中,當點P到x軸距離為4個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點A在y軸正半軸上,頂點C在x軸正半軸上,拋物線(a<0)的頂點為D,且經(jīng)過點A、B.若△ABD為等腰直角三角形,則a的值為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛旅游車從大理返回昆明,旅游車距昆明的路程y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示,試回答下列問題:
(1)求此函數(shù)的表達式(不必求出自變量的取值范圍);
(2)若旅游車8:00從大理出發(fā),11:30在某加油站加油,問此時旅游車距昆明還有多少千米(途中停車時間不計)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com