【題目】汽車租賃行業(yè)現(xiàn)在火爆起來.小明開辦了一家汽車租賃公司擁有汽車20,在旺季每輛車的每天租金為600元時,可全部租出當每輛車的每天租金增加50元時,未租出的車將增加一輛,租出的車輛每輛每天需要維護費200,未租出的車輛每輛每天需要維護費100,每天其他開銷共計1000

(1)當每輛車的租金為1000元時,每天能租出多少輛車?每天凈收益為多少元?

(2)當每輛車的每天租金定為多少元時,租賃公司的每天凈收益最大?最大凈收益為多少元?(每天凈收益=總租金﹣租出去車輛維護費﹣未租出去車輛維護費﹣每天其他開銷

【答案】1當每輛車的租金為1000元時,每天能租出12輛車,每天凈收益為7800;(2當每輛車的每天租金定為850元時,租賃公司的每天凈收益最大,最大凈收益為8250

【解析】

1)根據(jù):租出的車=20 , 每天凈收益=總租金﹣租出去車輛維護費﹣未租出去車輛維護費﹣每天其他開銷,列式計算可得;
2)根據(jù):每天凈收益=總租金﹣租出去車輛維護費﹣未租出去車輛維護費﹣每天其他開銷列出函數(shù)關系式,根據(jù)二次函數(shù)性質可得最值情況.

1)當每輛車的租金為x元時,每天租出的車有:20=12(輛),每天的凈收益為:12×(1000200)﹣8×1001000=7800元,答:當每輛車的租金為1000元時,每天能租出12輛車,每天凈收益為7800元.

2)設每輛車每天的租金為x元,每天的凈收益為y元,根據(jù)題意,得:y=(x200)(20)﹣×1001000

=﹣x2+34x6200

a=﹣0,∴當x=﹣ =850元時,y取得最大值8250元,答:當每輛車的每天租金定為850元時,租賃公司的每天凈收益最大,最大凈收益為8250元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,E是線段AB的中點,連接CE并延長交線段AD于點F

1)求證四邊形BCFD為平行四邊形;

2)若AB6求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點

C0,3

求該函數(shù)的關系式;

求改拋物線與x軸的交點A,B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在坡頂A處的同一水平面上有一座大型紀念碑BC,某同學在斜坡底P處測得該碑的碑頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米到達坡頂A,在坡頂A處又測得該碑的碑頂B的仰角為76°,求紀念碑BC的高度(結果精確到0.1米).(過點A作AD⊥PO,垂足為點D.坡度=AD:PD)(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名在校大學生利用“互聯(lián)網+”自主創(chuàng)業(yè),銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.

(1)求之間的函數(shù)關系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的平分線AD交BC于E,交△ABC的外接圓⊙O于D.

(1)求證:△ABE∽△ADC;

(2)連接BD,OB,OC,OD,且OD交BC于點F,若點F恰好是OD的中點.求證:四邊形OBDC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,然后解答提出的問題:

設 m,n 是有理數(shù),且滿足 m+n=2﹣3 ,求 nm 的值.

解:由題意,移項得,(m﹣2)+(n+3)=0,

∵m、n 是有理數(shù),∴m﹣2,n+3 也是有理數(shù),

又∵ 是有理數(shù),∴m﹣2=0,n+3=0,∴m=2,n=﹣3

∴nm=(﹣3)2=9.

問題解決:設 a、b 都是有理數(shù),且 a2+b=16+5,求2﹣5b的值.

查看答案和解析>>

同步練習冊答案