如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從點(diǎn)O正上方2米的點(diǎn)A處發(fā)出把球看成點(diǎn),其運(yùn)行的高度y(米)與運(yùn)行的水平距離x(米)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h,已知 球網(wǎng)與點(diǎn)O的水平距離為9米,高度為2.43米,球場(chǎng)的邊界距點(diǎn)O的水平距離為18米.
(1)當(dāng)h=2.6時(shí),求y與x的函數(shù)關(guān)系式.
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.
(3)若球一定能越過(guò)球網(wǎng),又不出邊界.則h的取值范圍是多少?
(1)y與x的關(guān)系式為:y=﹣(x﹣6)2+2.6,
(2)球能過(guò)球網(wǎng);會(huì)出界;
(3)若球一定能越過(guò)球網(wǎng),又不出邊界,h的取值范圍是:h≥.
解析試題分析:(1)由h=2.6,球從O點(diǎn)正上方2m的A處發(fā)出,將點(diǎn)(0,2)代入解析式求出即可;
(2)當(dāng)x=9時(shí),y=(x﹣6)2+2.6=2.45>2.43;當(dāng)y=0時(shí),(x﹣6)2+2.6=0,得x=6+>18即可作出判斷;
(3)根據(jù)當(dāng)球正好過(guò)點(diǎn)(18,0)時(shí),拋物線y=a(x﹣6)2+h還過(guò)點(diǎn)(0,2),以及當(dāng)球剛能過(guò)網(wǎng),此時(shí)函數(shù)解析式過(guò)(9,2.43),拋物線y=a(x﹣6)2+h還過(guò)點(diǎn)(0,2)時(shí)分別得出h的取值范圍,即可得出答案.
試題解析:(1)∵h(yuǎn)=2.6,球從O點(diǎn)正上方2m的A處發(fā)出,
∴拋物線y=a(x﹣6)2+h過(guò)點(diǎn)(0,2),
∴2=a(0﹣6)2+2.6,
解得:a=,
故y與x的關(guān)系式為:y=(x﹣6)2+2.6,
(2)當(dāng)x=9時(shí),y=(x﹣6)2+2.6=2.45>2.43,
所以球能過(guò)球網(wǎng);
當(dāng)y=0時(shí),(x﹣6)2+2.6=0,
解得:x1=6+>18,x2=6﹣(舍去)
故會(huì)出界;
(3)當(dāng)球正好過(guò)點(diǎn)(18,0)時(shí),拋物線y=a(x﹣6)2+h還過(guò)點(diǎn)(0,2),代入解析式得:
,
解得,
此時(shí)二次函數(shù)解析式為:y=(x﹣6)2+,
此時(shí)球若不出邊界h≥,
當(dāng)球剛能過(guò)網(wǎng),此時(shí)函數(shù)解析式過(guò)(9,2.43),拋物線y=a(x﹣6)2+h還過(guò)點(diǎn)(0,2),代入解析式得:,
解得,
此時(shí)球要過(guò)網(wǎng)h≥,
故若球一定能越過(guò)球網(wǎng),又不出邊界,h的取值范圍是:h≥.
考點(diǎn):二次函數(shù)的應(yīng)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
若關(guān)于x的函數(shù)y=kx2+2x-1與軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x 軸于點(diǎn)A3;……如此進(jìn)行下去,直至得C13.若P(37,m)在第13段拋物線C13上,則m =_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:計(jì)算題
在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量(個(gè))與銷售單價(jià)(元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:
(1)觀察圖象判斷與之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn)(元)與銷售單價(jià)(元/個(gè))之間的函數(shù)關(guān)系式;
(3)若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大的利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線y=ax2+bx﹣4與x軸交于A(﹣2,0),B(8,0)兩點(diǎn),與y軸交于點(diǎn)C,連接BC,以BC為一邊,作菱形BDEC,使其對(duì)角線在坐標(biāo)軸上,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求拋物線的解析式;
(2)將拋物線向上平移n個(gè)單位,使其頂點(diǎn)在菱形BDEC內(nèi)(不含菱形的邊),求n的取值范圍;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M.試探究m為何值時(shí),四邊形CQMD是平行四邊形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
兩個(gè)直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點(diǎn)O與E重合.
(1)Rt△AOB固定不動(dòng),Rt△CED沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)Rt△CED以(1)中的速度和方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間x=2秒時(shí),Rt△CED運(yùn)動(dòng)到如圖二所示的位置,若拋物線y=x2+bx+c過(guò)點(diǎn)A,G,求拋物線的解析式;
(3)現(xiàn)有一動(dòng)點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng),試問(wèn)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在點(diǎn)P到x軸或y軸的距離為2的情況?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,二次函數(shù)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,-3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD.過(guò)點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2))求證:為定值;
(3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F.探索:在x軸的負(fù)半軸上是否存在點(diǎn)G,連接CF,以線段GF、AD、AE的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?如果存在,只要找出一個(gè)滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸的一個(gè)交點(diǎn)為A(-2,0),與y軸的交點(diǎn)為C,對(duì)稱軸是x=3,對(duì)稱軸與x軸交于點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)經(jīng)過(guò)B,C的直線l平移后與拋物線交于點(diǎn)M,與x軸交于點(diǎn)N,當(dāng)以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求出點(diǎn)M的坐標(biāo);
(3)若點(diǎn)D在x軸上,在拋物線上是否存在點(diǎn)P,使得△PBD≌△PBC?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com