如圖,已知△PDC是⊙O的內(nèi)接三角形,CP=CD,若將△PCD繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C剛落在⊙O上的A處時(shí),停止旋轉(zhuǎn),此時(shí)點(diǎn)D落在點(diǎn)B處.                                                                     

(1)求證:PB與⊙O相切;                                                                  

(2)當(dāng)PD=2,∠DPC=30°時(shí),求⊙O的半徑長.                                    

                                                            


【考點(diǎn)】切線的判定與性質(zhì);全等三角形的判定與性質(zhì);旋轉(zhuǎn)的性質(zhì).                 

【專題】探究型.                                                                              

【分析】(1)連接OA、OP,由旋轉(zhuǎn)可得:△PAB≌△PCD,再由全等三角形的性質(zhì)可知AP=PC=DC,再根據(jù)∠BPA=∠DPC=∠D可得出∠BPO=90°,進(jìn)而可知PB與⊙O相切;                                               

(2)過點(diǎn)A作AE⊥PB,垂足為E,根據(jù)∠BPA=30°,PB=2,△PAB是等腰三角形,可得出BE=EP=,PA=2,PB與⊙O相切于點(diǎn)P可知∠APO=60°,故可知PA=2.                                           

【解答】(1)證明:連接OA、OP,OC,由旋轉(zhuǎn)可得:△PAB≌△PCD,                   

∴PA=PC=DC,                                                                                 

∴AP=PC=DC,∠AOP=∠POC=2∠D,∠APO=∠OAP=,                   

又∵∠BPA=∠DPC=∠D,                                                                       

∴∠BPO=∠BPA+=90°                                                      

∴PB與⊙O相切;                                                                             

                                                                                                          

(2)解:過點(diǎn)A作AE⊥PB,垂足為E,                                                

∵∠BPA=30°,PB=2,△PAB是等腰三角形;                                           

∴BE=EP=,(6分)                                                                          

PA===2                                                                          

又∵PB與⊙O相切于點(diǎn)P,                                                                     

∴∠APO=60°,                                                                                 

∴OP=PA=2.                                                                                    

【點(diǎn)評】本題考查的是切線的判定與性質(zhì)、全等三角形的判定與性質(zhì)及圖形旋轉(zhuǎn)的性質(zhì),能根據(jù)題意作出輔助線是解答此題的關(guān)鍵.                                                                                        


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知一次函數(shù)y=kx﹣3的圖象與正比例函數(shù)y=的圖象相交于點(diǎn)(﹣2,a).

(1)求出一次函數(shù)解析式.

(2)點(diǎn)A(x1,y1),B(x2,y2)都在一次函數(shù)圖象上,若x1<x2,試比較y1與y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若三角形的兩邊長分別為7和9,則第三邊的長不可能是(     )

A.5       B.4       C.3       D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若實(shí)數(shù)a,b滿足a+b2=1,則a2+b2的最小值是      .                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列計(jì)算中,正確的是(  )                                                              

A.        B.           C.           D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,MN為⊙O的直徑,A、B是⊙O上的兩點(diǎn),過A作AC⊥MN于點(diǎn)C,過B作BD⊥MN于點(diǎn)D,P為DC上的任意一點(diǎn),若MN=20,AC=8,BD=6,則PA+PB的最小值是      .                   

                                                                          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)是函數(shù)y=﹣圖象上的三點(diǎn),且x1<0<x2<x3則y1、y2、y3的大小關(guān)系是( 。                                                                                        

A.y1<y2<y3              B.y2<y3<y1              C.y3<y2<y1              D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知一次函數(shù),請你補(bǔ)充一個(gè)條件          ,使的增大而減小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列運(yùn)算正確的是( 。

A.=±3     B.|﹣3|=﹣3  C.﹣=﹣3       D.﹣32=9

查看答案和解析>>

同步練習(xí)冊答案