【題目】在一個(gè)裝有2個(gè)紅球和3個(gè)白球(每個(gè)球除顏色外完全相同)的盒子中任意摸出一個(gè)球,摸到紅球小明獲勝,摸到白球小剛獲勝,這個(gè)游戲?qū)﹄p方公平嗎?為什么?如何修改可以讓游戲公平?
【答案】不公平;理由看詳解;取出一個(gè)白球,使紅球和白球的個(gè)數(shù)相等,這樣游戲公平.
【解析】
根據(jù)紅球和白球的個(gè)數(shù),以及總個(gè)數(shù),求出P(小明獲勝)和P(小剛獲勝),比較大小所以游戲即可。再根據(jù)取出一個(gè)白球,使紅球和白球的個(gè)數(shù)相等,P(小明獲勝)=;P(小剛獲勝)=,獲勝的概率相等,游戲公平.
因?yàn)楣?/span>5個(gè)球,紅球2個(gè),白球3個(gè),所以P(小明獲勝)=;P(小剛獲勝)=,<,所以游戲不公平。取出一個(gè)白球,使紅球和白球的個(gè)數(shù)相等,P(小明獲勝)=;P(小剛獲勝)=,獲勝的概率相等,游戲公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊△ABC邊AB上的一點(diǎn),且AD:DB=1:2,現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、F分別在AC和BC上,則CE:CF的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC邊的中點(diǎn),點(diǎn)E與點(diǎn)D關(guān)于AB對稱,連接AE、BE,分別延長AE、CB交于點(diǎn)F,若∠F=48°,則∠C的度數(shù)是( 。
A. 21°B. 52°C. 69°D. 74°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l,2表示兩人離A地的距離s(m)與時(shí)間t(h)的關(guān)系,請結(jié)合圖象解答下列問題:
(1)表示甲離A地的距離與時(shí)間關(guān)系的圖象是 (填l1或l2);甲的速度是 (km/h);乙的速度是 (km/h);
(2)甲出發(fā)多長時(shí)間后兩人相遇?(利用方程解決)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,則2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,計(jì)算出1+5+52+53+…+52019的值為( )
A. 52019-1B. 52020-1C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,得到Cn,若點(diǎn)P(2017,m)在拋物線Cn上,則m為( )
A. 1 B. ﹣1 C. 2 D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,點(diǎn)的對應(yīng)點(diǎn)分別是,連接線段與線段交于點(diǎn)M,連接.
(1)如圖1,求證:;
(2)如圖1,求證:OM平分;
(3)如圖2,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度數(shù).
(2)圖(1)所示的圖形中,有點(diǎn)像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,觀察“規(guī)形圖”圖(2),試探究∠BDC與∠A、∠B、∠C之間的數(shù)量關(guān)系,并說明理由.
(3)請你直接利用以上結(jié)論,解決以下問題:
①如圖(3),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=42°,則∠ABX+∠ACX= °.
②如圖(4),DC平分∠ADB,EC平分∠AEB,若∠DAE=60°,∠DBE=140°,求∠DCE的度數(shù).
③如圖(5),∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=68°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,點(diǎn)E是邊BC的中點(diǎn),AF∥ED,AE∥DF
(1)求證:四邊形AEDF為菱形;
(2)試探究:當(dāng)AB:BC= ,菱形AEDF為正方形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com