【題目】如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設(shè)點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是( 。

A.
B.
C.
D.

【答案】A
【解析】解:當(dāng)P點由A運動到B點時,即0≤x≤2時,y= ×2x=x,
當(dāng)P點由B運動到C點時,即2<x<4時,y= ×2×2=2,
符合題意的函數(shù)關(guān)系的圖象是A;
故選:A.
△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關(guān)系的圖象.本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應(yīng)注意自變量的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:
①新知學(xué)習(xí)
若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
②解決問題

已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點,連接AD,M為AB上的一點(0<AM<1),E是DC上的一點,連接ME,ME與AD交于點O,且SMOA=SDOE
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【操作發(fā)現(xiàn)】在計算器上輸入一個正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運算結(jié)果越來越接近1或都等于1.
【提出問題】輸入一個實數(shù),不斷地進行“乘以常數(shù)k,再加上常數(shù)b”的運算,有什么規(guī)律?
【分析問題】我們可用框圖表示這種運算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(x2 , y1),然后再x軸上確定對應(yīng)的數(shù)x2 , …,以此類推.
【解決問題】研究輸入實數(shù)x1時,隨著運算次數(shù)n的不斷增加,運算結(jié)果x,怎樣變化.

(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進行觀察研究;
(2)若k>1,又得到什么結(jié)論?請說明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請在x軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實數(shù)x1時,運算結(jié)果xn互不相等,且越來越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D沿BC自B向C運動(點D與點B、C不重合),作BE⊥AD于E,CF⊥AD于F,則BE+CF的值(  )

A.不變
B.增大
C.減小
D.先變大再變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點B的橫坐標(biāo)為x,點C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任取不等式組 的一個整數(shù)解,則能使關(guān)于x的方程:2x+k=﹣1的解為非負(fù)數(shù)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D沿BC自B向C運動(點D與點B、C不重合),作BE⊥AD于E,CF⊥AD于F,則BE+CF的值( 。

A.不變
B.增大
C.減小
D.先變大再變小

查看答案和解析>>

同步練習(xí)冊答案