在△ABC中,∠B=90º,∠A的平分線交BC于D,以D為圓心,DB長為半徑作⊙D

(1)試判斷直線AC與⊙D的位置關系,并說明理由;
(2)若點E在AB上,且DE=DC,當AB=3,AC=5時,求線段AE長.
(1)AC與⊙D相切;理由(略)  (2)AE=1

試題分析:證明:(1)過點D作DF⊥AC于F;
∵AB為⊙D的切線,
∴∠B=90°
∴AB⊥BC
∵AD平分∠BAC,DF⊥AC
∴BD=DF
∴AC與圓D相切
(2)由題意知,BC=4,設AE=X,則有BE=3-X,BD=4-DE
且,有
綜上可知X=1
點評:本題考查的是切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;及全等三角形的判斷,全等三角形的對應邊相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC內(nèi)接于⊙O,AC是⊙O的直徑,∠ACB=50°,點D是上一點,則∠D=         °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在中,AB=10,AC=8,BC=6,經(jīng)過點C且與邊AB相切的動圓與CA,CB分別相交于點P,Q,則線段PQ長度的最小值是        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

用一張半徑為24cm的扇形紙片做一個如圖所示的圓錐形小丑帽子側面(接縫忽略不計),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙片的面積是   cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將一個三角形紙板ABC的頂點A放在⊙O上,AB經(jīng)過圓心.∠A=25°,半徑OA=2,則在⊙O上被這個三角形紙板遮擋住的弧的長為       .(結果保留
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,P(0,2),Q(0,),若⊙P與⊙Q的半徑分別是3和2,則⊙P與⊙Q的位置關系是(      )
A.內(nèi)含B.外離C.外切D.相交

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=9cm,BC=12cm,P為BC的中點.動點Q從點P出發(fā),沿射線PC方向以2cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設點Q運動的時間為t s.

(1)求點P到直線AB的距離;
(2)當t=1.8時,判斷直線AB與⊙P的位置關系,并說明理由;
(3)已知⊙O為△ABC的外接圓,若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC是⊙O的內(nèi)接三角形,∠C=50°,則∠OAB=    °.
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正三角形ABC內(nèi)接于⊙O,動點P在圓周的劣弧AB上,且不與A、B重合,則∠BPC等于(      )

A.      B.     C.      D.

查看答案和解析>>

同步練習冊答案