【題目】已知,OC平分∠AOB,點(diǎn)P是射線OC上的一點(diǎn).

1)如圖一,過(guò)點(diǎn)PPDOA,PEOB,說(shuō)明PDPE相等的理由.

2)如圖二,如果點(diǎn)F、G分別在射線OAOB上,且∠FPG=60°,那么線段PFPG相等嗎?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,聯(lián)合FG,是什么形狀的三角形,請(qǐng)說(shuō)明理由.

【答案】見(jiàn)解析

【解析】

1)先判斷出∠AOC=BOC,進(jìn)而利用AAS判斷出△POD≌△POE,即可得出結(jié)論;

2)同(1)方法得出PM=PN,進(jìn)而利用SAS判斷出△PMF≌△PNG,即可得出結(jié)論;

3)利用頂角是60°的等腰三角形是等邊三角形判斷即可得出結(jié)論,

解:(1)∵OC是∠AOB的平分線,

在△POD和△POE

∴△POD≌△POE,

PD=PE;

2)相等,理由:如圖2,過(guò)點(diǎn)PPMOAM,PNOBN

同(1)的方法得,證得PM=PN

在四邊形PMON

在△PMF和△PNG

∴△PMF≌△PNG

PF=PG;

3△PFG是等邊三角形

理由:如圖2,連接FG,由(2)知,PF=PG

∵∠FPG=60°,

∴△PFG是等邊三角形,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng) 實(shí)驗(yàn)、猜想與證明

問(wèn)題情境

1)數(shù)學(xué)活動(dòng)課上,小穎向同學(xué)們提出了這樣一個(gè)問(wèn)題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是ABCD的中點(diǎn),作射線MN,連接MDMC,請(qǐng)直接寫(xiě)出線段MDMC之間的數(shù)量關(guān)系.

解決問(wèn)題

2)小彬受此問(wèn)題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅,其中?/span>A為銳角,如圖(2),AB=2BCM,N分別是AB,CD的中點(diǎn),過(guò)點(diǎn)CCEAD交射線AD于點(diǎn)E,交射線MN于點(diǎn)F,連接MEMC,則ME=MC,請(qǐng)你證明小彬的結(jié)論;

3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個(gè)新問(wèn)題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請(qǐng)你回答小麗提出的這個(gè)問(wèn)題,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的身高情況,王老師隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

組別

身高

身高情況分組表

根據(jù)圖表提供的信息,回答下列問(wèn)題:

1)樣本中,女生身高在組的人數(shù)有_________人;

2)在上面的扇形統(tǒng)計(jì)圖中,表示組的扇形的圓心角是_________°

3)已知該校共有男生800人,女生760人,請(qǐng)估計(jì)該校身高在之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, , .點(diǎn)OBC的中點(diǎn),點(diǎn)D沿BAC方向從B運(yùn)動(dòng)到C設(shè)點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為,1中某條線段的長(zhǎng)為y,若表示yx的函數(shù)關(guān)系的大致圖象如圖2所示,則這條線段可能是圖1中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠1+∠2180°,∠B=∠D,CD平分∠ACF

1DEBF平行嗎?請(qǐng)說(shuō)明理由.

2ABCD位置關(guān)系如何?為什么?

3AB平分∠CAE嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完全平方公式:(a±b2a2±2ab+b2適當(dāng)?shù)淖冃危梢越鉀Q很多的數(shù)學(xué)問(wèn)題.

例如:若a+b3,ab1,求a2+b2的值.

解:因?yàn)?/span>a+b3,ab1

所以(a+b292ab2

所以a2+b2+2ab9,2ab2

a2+b27

根據(jù)上面的解題思路與方法,解決下列問(wèn)題:

1)若(7x)(x4)=1,求(7x2+x42的值;

2)如圖,點(diǎn)C是線段AB上的一點(diǎn),以AC、BC為邊向兩邊作正方形,設(shè)AB5,兩正方形的面積和S1+S217,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運(yùn)貨21噸,2輛大貨車與4輛小貨車一次可以運(yùn)貨22噸.

1)每輛大貨車和每輛小貨車一次各可以運(yùn)貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運(yùn)貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)

3)日前有23噸貨物需要運(yùn)輸,欲租用這兩種貨車運(yùn)送,要求全部貨物一次運(yùn)完且每輛車必須裝滿.已知每輛大貨車一次運(yùn)貨租金為300元,每輛小貨車一次運(yùn)貨租金為200元,請(qǐng)列出所有的運(yùn)輸方案井求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:;

在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:

在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:;

在數(shù)軸上點(diǎn)、分別表示數(shù)、,則、兩點(diǎn)之間的距離

請(qǐng)回答下列問(wèn)題:

)數(shù)軸上表示的兩點(diǎn)之間的距離是__________

數(shù)軸上表示數(shù)的兩點(diǎn)之間的距離表示為__________.?dāng)?shù)軸上表示數(shù)____________________的兩點(diǎn)之間的距離表示為

)七年級(jí)研究性學(xué)習(xí)小組在數(shù)學(xué)老師指導(dǎo)下,對(duì)式子進(jìn)行探究:

①請(qǐng)你在草稿紙上畫(huà)出數(shù)軸,當(dāng)表示數(shù)的點(diǎn)在之間移動(dòng)時(shí),的值總是一個(gè)固定的值為:__________.(直接寫(xiě)出結(jié)果)

②請(qǐng)你在草稿紙上畫(huà)出數(shù)軸,要使,數(shù)軸上滿足條件的點(diǎn)表示的數(shù)字是:__________(直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠AOB=90°,點(diǎn)CD分別在射線OA、OB上,點(diǎn)E在∠AOB內(nèi)部.

1)根據(jù)語(yǔ)句畫(huà)圖形:

①畫(huà)直線CE

②畫(huà)射線OE;

③畫(huà)線段DE,

2)結(jié)合圖形,完成下面的填空:

①與∠ODE互補(bǔ)的角是 ;

②若∠BOE =AOE,則∠BOE的大小是 .

查看答案和解析>>

同步練習(xí)冊(cè)答案