精英家教網 > 初中數學 > 題目詳情

如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,則△DEB的周長為________cm.

15
分析:先根據ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再將其代入△DEB的周長中,通過邊長之間的轉換得到,周長=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以為15cm.
解答:∵CD平分∠ACB
∴∠ACD=∠ECD
∵DE⊥BC于E
∴∠DEC=∠A=90°
∵CD=CD
∴△ACD≌△ECD
∴AC=EC,AD=ED
∵∠A=90°,AB=AC
∴∠B=45°
∴BE=DE
∴△DEB的周長為:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線.
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.當∠A=70°時,則∠BPC的度數為
125°
125°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說明CD2=AD•BE.

查看答案和解析>>

同步練習冊答案