【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點H與點A重合時,EF=2
以上結(jié)論中,你認(rèn)為正確的有 . (填序號)

【答案】①③④
【解析】解:∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四邊形CFHE是平行四邊形,
由翻折的性質(zhì)得,CF=FH,
∴四邊形CFHE是菱形,(故①正確);
∴∠BCH=∠ECH,
∴只有∠DCE=30°時EC平分∠DCH,(故②錯誤);
點H與點A重合時,設(shè)BF=x,則AF=FC=8﹣x,
在Rt△ABF中,AB2+BF2=AF2 ,
即42+x2=(8﹣x)2
解得x=3,
點G與點D重合時,CF=CD=4,
∴BF=4,
∴線段BF的取值范圍為3≤BF≤4,(故③正確);
過點F作FM⊥AD于M,

則ME=(8﹣3)﹣3=2,
由勾股定理得,
EF= = =2 ,(故④正確);
綜上所述,結(jié)論正確的有①③④共3個,
故答案為①③④.
①先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出①正確;②根據(jù)菱形的對角線平分一組對角線可得∠BCH=∠ECH,然后求出只有∠DCE=30°時EC平分∠DCH,判斷出②錯誤;③點H與點A重合時,設(shè)BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,點G與點D重合時,CF=CD,求出BF=4,然后寫出BF的取值范圍,判斷出③正確;④過點F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判斷出④正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且當(dāng)x∈[﹣a,1]時,不等式f(x)≤g(x)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB經(jīng)過平移得到線段A′B′,其中點A,B的對應(yīng)點分別為點A′,B′,這四個點都在格點上,則這四個點組成的四邊形ABB′A′的面積是( )

A.4
B.6
C.9
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1∥l2∥l3 , 等腰直角△ABC的三個頂點A,B,C分別在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距離為1,l2 , l3的距離為3,求:
(1)線段AB的長;
(2) 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論: ① = ;② = ;③ ;④ =
其中正確的個數(shù)有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游風(fēng)景區(qū)出售一種紀(jì)念品,該紀(jì)念品的成本為12元/個,這種紀(jì)念品的銷售價格為x(元/個)與每天的銷售數(shù)量y(個)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)銷售價格定為多少時,每天可以獲得最大利潤?并求出最大利潤.
(3)“十一”期間,游客數(shù)量大幅增加,若按八折促銷該紀(jì)念品,預(yù)計每天的銷售數(shù)量可增加200%,為獲得最大利潤,“十一”假期該紀(jì)念品打八折后售價為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點M成中心對稱,請直接寫出對稱中心M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,8),點P在邊BC上以每秒1個單位長的速度由點C向點B運動,同時點Q在邊AB上以每秒a個單位長的速度由點A向點B運動,運動時間為t秒(t>0).

(1)若反比例函數(shù)y= 圖象經(jīng)過P點、Q點,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點運動到AB中點時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;

查看答案和解析>>

同步練習(xí)冊答案