【題目】下列說法不正確的是(

A. 有兩組對邊分別平行的四邊形是平行四邊形

B. 平行四邊形的對角線互相平分

C. 平行四邊形的對邊平行且相等

D. 平行四邊形的對角互補,鄰角相等

【答案】D

【解析】A選項:平行四邊形的判定定理:有兩組對邊分別平行的四邊形是平行四邊形,故本選項正確;
B選項:平行四邊形的性質(zhì):平行四邊形的對角線互相平分,故本選項正確;

C選項:平行四邊形的性質(zhì):平行四邊形的對邊平行且相等,故本選項正確;
D選項:平行四邊形的對角相等,鄰角互補,故本選項錯誤;

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AD=AE,若要得到“ABD≌△ACE”,必須添加一個條件,則下列所添條件不恰當?shù)氖牵?)

A.BD=CE B.ABD=ACE C.BAD=CAE D.BAC=DAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐘面角是指時鐘的時針與分針所成的角.如圖,圖①、圖②、圖③三個鐘面上的時刻分別記錄了某中學的早晨上課時間7:30、中午放學時間11:50、下午放學時間17:00.

(1)分別寫出圖中鐘面角的度數(shù):1= °、2= °、3= °;

(2)在某個整點,鐘面角可能會等于90°,寫出可能的一個時刻為 ;

(3)請運用一元一次方程的知識解決問題:鐘面上,在7:30~8:00之間,鐘面角等于90°的時刻是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦與小半圓N相切于點F,且ABCD,AB=4,設、的長分別為x、y,線段ED的長為z,則z(x+y)的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a﹣b=2,則代數(shù)式2a﹣2b﹣3的值是(

A.1 B.2 C.5 D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;

(3)過點B作BCx軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A為O外一點,AB切O于點B,AO交O于C,CDOB于E,交O于點D,連接OD.若AB=12,AC=8.

(1)求OD的長;

(2)求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把一個半圓與二次函數(shù)圖象的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點(半圓與二次函數(shù)圖象的連接點除外),那么這條直線叫做“蛋圓”的切線.如圖,二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于點A、B,與y軸交于點D,AB為半圓直徑,半圓圓心為點M,半圓與y軸的正半軸交于點C.

(1)求點C的坐標;

(2)分別求出經(jīng)過點C和點D的“蛋圓”的切線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值已知|a–4| + ( b+1 )2 = 0,求5ab2–[2a2b-(4ab2-2a2b)]+4a2b的值。

查看答案和解析>>

同步練習冊答案