【題目】如圖,BE是圓O的直徑,A在EB的延長(zhǎng)線上,AP為圓O的切線,P為切點(diǎn),弦PD垂直于BE于點(diǎn)C.
(1)求證:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.
【答案】解:(1)證明:連接OP.
∵OP=OD,∴∠OPD=∠D;
∵PD⊥BE,
∴∠OCD=90°;
在Rt△OCD中,∠D+∠AOD=90°,
又∵AP是⊙O的切線,
∴AP⊥OP,
則∠OPD+∠APC=90°,
∴∠AOD=∠APC;
(2)連接PE.
∴∠BPE=90°(直徑所對(duì)的圓周角是直角);
∵AP是⊙O的切線,
∴∠APB=∠OPE=∠PEA;
∵OC:CB=1:2,
∴設(shè)OC=x,則BC=2x,OP=OB=3x;
在Rt△OPC中,OP=3x,OC=x,由勾股定理得:
PC2=OP2﹣OC2=8x2;
在Rt△OPC中,PC⊥OA,由射影定理得:
PC2=OCAC,即8x2=x(2x+6),6x2=6x,
解得x=0(舍去),x=1;
∴OP=OB=3,PC=2,CE=OC+OE=3+1=4,
∴tan∠APB=tan∠PEC==,
∴⊙O的半徑為3,∠APB的正切值是.
【解析】(1)連接OP.可結(jié)合已知的等角和等腰三角形、直角三角形的性質(zhì)進(jìn)行證明;
(2)根據(jù)OC、BC的比例關(guān)系,可用未知數(shù)表示出OC、BC的表達(dá)式,進(jìn)而可得OP、OB的表達(dá)式;在Rt△AOP中,PC⊥OA,根據(jù)射影定理得:PC2=PCAC,PC2的表達(dá)式可在Rt△OPC中由勾股定理求得,由此求得未知數(shù)的知,從而確定PC、CE的長(zhǎng),也就能求出⊙O的半徑和∠APB的正切值.
【考點(diǎn)精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你用學(xué)習(xí)“一次函數(shù)”時(shí)積累的經(jīng)驗(yàn)和方法研究函數(shù)y=|x|的圖象和性質(zhì),并解決問(wèn)題.
(1)完成下列步驟,畫出函數(shù)y=|x|的圖象;
①列表、填空;
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 3 | 1 | 1 | 2 | 3 | … |
②描點(diǎn);
③連線.
(2)觀察圖象,當(dāng)x 時(shí),y隨x的增大而增大;
(3)根據(jù)圖象,不等式|x|<x+的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=100°
(1)如圖1,OC平分∠AOB,OD、OE分別平分∠BOC和∠AOC,求∠DOE的度數(shù);
(2)當(dāng)OC為∠AOB內(nèi)任一條射線時(shí),如圖2,OD、OE仍是∠BOC和∠AOC的平分線,此時(shí)能否求出∠DOE的度數(shù)?如果能,請(qǐng)你求出∠DOE的度數(shù);
(3)當(dāng)OC為∠AOB外任一條射線時(shí),如圖3,OD、OE仍是∠BOC和∠AOC的平分線,此時(shí)能否求出∠DOE的度數(shù)?如果能,請(qǐng)你求出∠DOE的度數(shù);
(4)通過(guò)上面幾個(gè)問(wèn)題探求,請(qǐng)你用一個(gè)結(jié)論來(lái)表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )
A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥AB交BC于F,交AC于E,過(guò)點(diǎn)O作OD⊥BC于D,下列四個(gè)結(jié)論:
①∠AOB=90°+∠C;②AE+BF=EF;③當(dāng)∠C=90°時(shí),E,F分別是AC,BC的中點(diǎn);④若OD=a,CE+CF=2b,則S△CEF=ab.其中正確的是( 。
A. ①② B. ③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在BC上,DE⊥AB于點(diǎn)E,DF⊥BC交AC于點(diǎn)F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在水平線的夾角為120°,感覺(jué)最舒適(如圖1),側(cè)面示意圖為圖2.使用時(shí)為了散熱,她在底板下墊入散熱架ACO′后,電腦轉(zhuǎn)到AO′B′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=24cm,O′C⊥OA于點(diǎn)C,O′C=12cm.
(1)求∠CAO′的度數(shù).
(2)顯示屏的頂部B′比原來(lái)升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O′B與水平線的夾角仍保持120°,則顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針?lè)较蛐D(zhuǎn)多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以O(shè)(0,0)、A(2,0)為頂點(diǎn)作正△OAP1 , 以點(diǎn)P1和線段P1A的中點(diǎn)B為頂點(diǎn)作正△P1BP2 , 再以點(diǎn)P2和線段P2B的中點(diǎn)C為頂點(diǎn)作△P2CP3 , …,如此繼續(xù)下去,則第六個(gè)正三角形中,不在第五個(gè)正三角形上的頂點(diǎn)P6的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com