【題目】放風(fēng)箏是大家喜愛的一種運(yùn)動,星期天的上午小明在市政府廣場上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹梢上,風(fēng)箏固定在了D處,此時(shí)風(fēng)箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達(dá)了離A處10米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A,B,C在同一條水平直線上,請你求出小明此時(shí)所收回的風(fēng)箏線的長度是多少米?(風(fēng)箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).

【答案】解:作DH⊥BC于H,設(shè)DH=x米.
∵∠ACD=90°,
∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°= x,
在直角△BDH中,∠DBH=45°,BH=DH=x,BD= x,
∵AH﹣BH=AB=10米,
x﹣x=10,
∴x=5( +1),
∴小明此時(shí)所收回的風(fēng)箏的長度為:
AD﹣BD=2x﹣ x=(2﹣ )×5( +1)≈(2﹣1.414)×5×(1.732+1)≈8米
【解析】作DH⊥BC于H,設(shè)DH=x米,根據(jù)三角函數(shù)表示出AH于BH的長,根據(jù)AH﹣BH=AB得到一個(gè)關(guān)于x的方程,解方程求得x的值,進(jìn)而求得AD﹣BD的長,即可解題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分線,點(diǎn)E,F(xiàn)分別是邊AC, BC上的動點(diǎn),AC=4,設(shè)AE=x,BF=y.

(1)若x+y=3,求四邊形CEDF的面積;

(2)當(dāng)DEDF時(shí),如圖2,試探索x、y之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解題過程:(-15)÷(-3)×6

(解析)原式=(-15)÷(-)×6 (第一步)

=(-15)÷(-25)(第二步)

=-(第三步)

解答問題:

①上面解答過程有兩個(gè)錯(cuò)誤,第一處是第______步,錯(cuò)誤的原因是______;第二處是第______步,錯(cuò)誤的原因是______;

②請你正確解答本題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E,F(xiàn)分別在AB,BC,AC邊上,且BE=CF,BD=CE.

(1)求證:△DEF是等腰三角形;

(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù);

(3)若∠A=DEF,判斷△DEF是否為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)為了深入學(xué)習(xí)社會主義核心價(jià)值觀,特對本校部分學(xué)生(隨機(jī)抽樣)進(jìn)行了一次相關(guān)知識的測試(成績分為A、B、C、D、E、五個(gè)組,x表示測試成績),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答以下問題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60

(1)參加調(diào)查測試的學(xué)生共有人;請將兩幅統(tǒng)計(jì)圖補(bǔ)充完整
(2)本次調(diào)查測試成績的中位數(shù)落在組內(nèi).
(3)本次調(diào)查測試成績在80分以上(含80分)為優(yōu)秀,該中學(xué)共有3000人,請估計(jì)全校測試成績?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(m+2)x+3-n,

(l)m,n是何值時(shí),y隨x的增大而減小?

(2)m,n為何值時(shí),函數(shù)的圖象經(jīng)過原點(diǎn)?

(3)若函數(shù)圖象經(jīng)過第二、三、四象限,求 m,n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵居民節(jié)約用水,某市對居民用水收費(fèi)實(shí)行“階梯價(jià)”,按每年用水量統(tǒng)計(jì),不超過180立方米的部分按每立方米5元收費(fèi);超過180立方米不超過260立方米的部分按每立方米7元收費(fèi);超過260立方米的部分按每立方米9元收費(fèi).

(1)設(shè)每年用水量為x立方米,“階梯價(jià)”應(yīng)繳水費(fèi)y元,請寫出y(元)x(立方米)之間的函數(shù)解析;

(2)明明預(yù)計(jì)2015全年用水量為200立方米,那么按“階梯價(jià)”收費(fèi),她家應(yīng)繳水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB的直徑,直線L相切于點(diǎn)C,,CDABE,直線L,垂足為FBFC

圖中哪條線段與AE相等?試證明你的結(jié)論;

,,求AB的值.

查看答案和解析>>

同步練習(xí)冊答案