【題目】在直角三角形ABC中,∠C=90°,點OAB上的一點,以點O為圓心,OA為半徑的圓弧與BC相切于點D,交AC于點E,連接AD

1)求證:AD平分∠BAC;

2)已知AE=2,DC=,求圓弧的半徑.

【答案】(1)證明見解析;(2)2.

【解析】試題分析:(1)根據(jù)切線的性質(zhì)可得OD⊥BC,即得∠ODB=∠C=90°,則可得OD∥AC,根據(jù)平行線的性質(zhì)可得∠ODA=∠CAD,根據(jù)圓的基本性質(zhì)可得∠ODA=∠OAD,問題得證;

2)過OOH⊥ACH,根據(jù)垂徑定理可得,由OD∥ACOH⊥AC,∠C=90°可求得OH=DC=,在Rt△ABC中,根據(jù)勾股定理即可求得結(jié)果.

1∵OA為半徑的圓弧與BC相切于點D

∴OD⊥BC

∴∠ODB=∠C=90°

∴OD∥AC

∴∠ODA=∠CAD

∵OA=OD

∴∠ODA=∠OAD

∴∠CAD=∠OAD

∴AD平分∠BAC;

2)過OOH⊥ACH

∵OD∥AC,OH⊥AC,∠C=90°,

∴OH=DC=

Rt△ABC中,圓弧的半徑OA=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國道路交通管理條例規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,BC=6,AC=4.點P、Q分別從點A、B同時出發(fā),點P沿A→C的方向以每秒1個單位長的速度向點C運動,點Q沿B→C的方向以每秒2個單位長的速度向點C運動.當(dāng)其中一個點先到達(dá)點C時,點P、Q停止運動當(dāng)四邊形ABQP的面積是△ABC面積的一半時,求點P運動的時間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E在線段CD上,EAEB分別平分∠DAB∠CBA,F在線段AB上運動,AD=4cm,BC=3cm,且AD∥BC.

1)你認(rèn)為AEBE有什么位置關(guān)系?并驗證你的結(jié)論;

2)當(dāng)點F運動到離點A多少厘米時,△ADE△AFE全等?為什么?

3)在(2)的情況下,此時BF=BC嗎?證明你的結(jié)論并求出AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求出符合條件的二次函數(shù)解析式:

(1)二次函數(shù)圖象經(jīng)過點(﹣1,0),(1,2),(0,3);

(2)二次函數(shù)圖象的頂點坐標(biāo)為(﹣3,6),且經(jīng)過點(﹣2,10);

(3)二次函數(shù)圖象與x軸的交點坐標(biāo)為(﹣1,0),(3,0),與y軸交點的縱坐標(biāo)為9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度數(shù).有同學(xué)用了下面的方法.但由于一時犯急沒有寫完整,請你幫他添寫完整.

解:∵AD∥CB(已知

∴∠C+∠ADC=180°_________________

∵∠A=∠C ___________________,

∴∠A+∠ADC=180° ___________________

∴AB∥CD ___________________________,

∴∠BDC=∠ABD=32° ___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結(jié)果的實驗最有可能的是(

實驗次數(shù)

100

200

300

500

800

1000

2000

頻率

0365

0328

0330

0334

0336

0332

0333

A一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

B在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”

C拋一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是5

D拋一枚硬幣,出現(xiàn)反面的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長5米寬4米的地毯,為了美觀設(shè)計了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個地毯面積的

(1)求配色條紋的寬度;

(2)如果地毯配色條紋部分每平方米造價200元,其余部分每平方米造價100元,求地毯的總造價.

查看答案和解析>>

同步練習(xí)冊答案