【題目】定義:有三個(gè)內(nèi)角相等的四邊形叫三等角四邊形.

1)三等角四邊形ABCD中,∠A=B=C,求∠A的取值范圍;

2)如圖,折疊平行四邊形紙片DEBF,使頂點(diǎn)E,F分別落在邊BEBF上的點(diǎn)A,C處,折痕分別為DGDH.求證:四邊形ABCD是三等角四邊形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】(1)∵∠A=∠B=∠C,

∴3∠A+∠ADC=360°,

∴∠ADC=360°﹣3∠A.

∵0<∠ADC<180°,

∴0°<360°﹣3∠A<180°,

∴60°<∠A<120°;

(2)證明:∵四邊形DEBF為平行四邊形,

∴∠E=∠F,且∠E+∠EBF=180°.

∵DE=DA,DF=DC,

∴∠E=∠DAE=∠F=∠DCF,

∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,

∴∠DAB=∠DCB=∠ABC,

∴四邊形ABCD是三等角四邊形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報(bào)說中山市明天降水概率是20%”,理解正確的是( 。

A. 中山市明天將有20%的地區(qū)降水

B. 中山市明天降水的可能性較小

C. 中山市明天將有20%的時(shí)間降水

D. 中山市明天降水的可能性較大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OMON分別是∠AOC,BOD的平分線,∠MON等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的頂點(diǎn)坐標(biāo)是(﹣1,3),與x軸的交點(diǎn)是(2,0),則另一個(gè)交點(diǎn)為(  )

A. (0,﹣3) B. (﹣3,0) C. (﹣4,0) D. (﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=﹣(x﹣2)2﹣2先向左平移1個(gè)單位,再向下平移1個(gè)單位,得到的拋物線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),拋物線過A、B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;

(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)將直線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為ACG內(nèi)以點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊APR,等邊AGQ,連接QR

①求證:PG=RQ;

②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2a2﹣6a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某服裝廠現(xiàn)有甲種布料50米,乙種布料27米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)A,B兩種型號(hào)的時(shí)裝共60套. 已知做一套A型號(hào)的時(shí)裝需用甲種布料1米,乙種布料0.2米,可獲利30元;做一套B型號(hào)的時(shí)裝需用甲種布料0.5米,乙種布料0.8米,可獲利20元. 設(shè)生產(chǎn)A型號(hào)的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)兩種型號(hào)的時(shí)裝所獲得的總利潤(rùn)為y元.

(1)求y(元)與x(套)之間的函數(shù)表達(dá)式,并求出自變量的取值范圍.

(2)當(dāng)生產(chǎn)A型號(hào)的時(shí)裝多少套時(shí),能使該廠所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(+3)+(﹣5)=(
A.﹣8
B.+8
C.﹣2
D.+2

查看答案和解析>>

同步練習(xí)冊(cè)答案