(2013•歷城區(qū)三模)如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE-ED-DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分).則下列結(jié)論錯誤的是( 。
分析:根據(jù)圖(2)可以判斷三角形的面積變化分為三段,可以判斷出當(dāng)點P到達點E時點Q到達點C,從而得到BC、BE的長度,再根據(jù)M、N是從5秒到7秒,可得ED的長度,然后表示出AE的長度,根據(jù)勾股定理求出AB的長度,然后針對各小題分析解答即可.
解答:解:根據(jù)圖(2)可得,當(dāng)點P到達點E時點Q到達點C,
∵點P、Q的運動的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故A選項正確;

又∵從M到N的變化是2,
∴ED=2,
∴AE=AD-ED=5-2=3,
在Rt△ABE中,AB=
BE2-AE2
=
52-32
=4,
∴cos∠ABE=
AB
BE
=
4
5
,故B選項錯誤;

如圖(1)過點P作PF⊥BC于點F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=
AB
BE
=
4
5
,
∴PF=PBsin∠PBF=
4
5
t,
∴當(dāng)0<t≤5時,y=
1
2
BQ•PF=
1
2
t•
4
5
t=
2
5
t2,故C選項正確;

當(dāng)t=
29
4
秒時,點P在CD上,此時,PD=
29
4
-BE-ED=
29
4
-5-2=
1
4

PQ=CD-PD=4-
1
4
=
15
4
,
AB
AE
=
4
3
,
BQ
PQ
=
4
3
,
AB
AE
=
BQ
PQ
,
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故D選項正確.
故選B.
點評:本題考查了動點問題的函數(shù)圖象,根據(jù)圖(2)判斷出點P到達點E時點Q到達點C是解題的關(guān)鍵,也是本題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)方程組
x-y=2
2x+y=4
的解是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)如圖,已知直角梯形ABCD中,AD∥BC,∠BAD=90°,AD=2,AB=4,BC=5,點P為AB邊上一動點,連接PC、PD,若△PCD為直角三角形,則滿足條件的點P有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)如圖,在斜邊長為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1D1C1;在等腰直角三角形OA1B1中作內(nèi)接正方形A2B2D2C2;在等腰直角三角形OA2B2中作內(nèi)接正方形A3B3D3C3;…;依次做下去,則第n個正方形AnBnDnCn的邊長是
1
3n
1
3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)(1)先化簡,再求值:(a+b)(a-b)+2a2,其中a=1,b=
2

(2)解不等式組:
x-1
2
≤1
x-2<4(x+1)
并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)如圖,已知點(1,2)在函數(shù)y=
k
x
(x>0)的圖象上,矩形ABCD的邊BC在x正半軸上,E是對角線AC、BD的交點,函數(shù)y=
k
x
(x>0)的圖象又經(jīng)過A,E兩點,點E的縱坐標(biāo)為m.
(1)求k的值;
(2)求點A的坐標(biāo)(用m表示);
(3)是否存在實數(shù)m,使四邊形ABCD為正方形?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案