【題目】已知:關(guān)于x的方程
(1)求證:不論m取何值時,方程總有兩個不相等的實(shí)數(shù)根
(2)若方程的一個根為1,求m的值及方程的另一根
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實(shí)數(shù)根,第三邊BC的長為5。當(dāng)△ABC是等腰三角形時,求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時,判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+n與x軸、y軸分別交于B、C兩點(diǎn),拋物線y=ax2+bx+3(a≠0)過C、B兩點(diǎn),交x軸于另一點(diǎn)A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點(diǎn)P是射線CB上一點(diǎn),過點(diǎn)P作x軸的垂線,垂足為H,交拋物線于Q,設(shè)P點(diǎn)橫坐標(biāo)為t,線段PQ的長為d,求出d與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)=0 (m為常數(shù))的兩個實(shí)數(shù)根,點(diǎn)M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD//BC,對角線AC、BD相交于點(diǎn)O ,若,則等于()
A. 1:6B. 1:3C. 1:4D. 1:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參與兩個數(shù)學(xué)活動,再回答問題:
活動:觀察下列兩個兩位數(shù)的積兩個乘數(shù)的十位上的數(shù)都是9,個位上的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,,,.
活動:觀察下列兩個三位數(shù)的積兩個乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個位上的數(shù)組成的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,.
分別寫出在活動、中你所猜想的是哪個算式的積最大?
對于活動,請用二次函數(shù)的知識證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示A、B、C、D四點(diǎn)在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點(diǎn)P,在上取一點(diǎn)Q,使得∠APQ=130°,則下列敘述何者正確( )
A. Q點(diǎn)在上,且>B. Q點(diǎn)在上,且<
C. Q點(diǎn)在上,且>D. Q點(diǎn)在上,且<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
()對于任意的實(shí)數(shù),判斷方程的根的情況,并說明理由.
()若方程的一個根為,求出的值及方程的另一個根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com