【題目】探索題:(x﹣1)(x+1)=x2﹣1;
(x﹣1)(x2+x+1)=x3﹣1;
(x﹣1)(x3+x2+x+1)=x4﹣1;
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
…
根據(jù)前面的規(guī)律,回答下列問題:
(1)(x﹣1)(xn+xn﹣1+xn﹣2+…+x3+x2+x+1)=_____.
(2)當(dāng)x=3時,(3﹣1)(32015+32014+32013+…+33+32+3+1)=______.
(3)求:22014+22013+22012+…+23+22+2+1的值.(請寫出解題過程).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知D是BC的中點,過點D作BC的垂線交∠BAC的平分線于點E,EF⊥AB于點F,EG⊥AC于點G.
(1)求證:BF=CG;
(2)若AB=10,AC=6,求線段CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AC上一點(CD>AD),按要求完成下列各小題.(保留作圖痕跡,不寫作法,標(biāo)明各頂點字母)
(1)連接BD,求作△DEF(點E在線段CD上,點F在線段AC的右側(cè)),使得△DEF≌△DAB;
(2)在(1)的條件下,作∠EFH=∠ABC,交CA的延長線于點H,并證明HF∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,等腰直角三角形OAB的斜邊AO在x軸上,,點B的坐標(biāo)為.
(1)求A點坐標(biāo);
(2)過B作軸于C,點D從B出發(fā)沿射線BC以每秒2個單位的速度運動,連接AD、OD,動點D的運動時間為t,的面積為S,求S與t的數(shù)量關(guān)系,并直接寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)點D運動到x軸下方時,延長AB交y軸于E,過E作于H,在x軸正半軸上取點F,連接BF交EH于G,,當(dāng)時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于點F,則∠DFB度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在二次函數(shù),與的部分對應(yīng)值如下表:
… | … | |||||
… | … |
則下列說法:①圖象經(jīng)過原點;②圖象開口向下;③圖象經(jīng)過點;④當(dāng)時,隨的增大而增大;⑤方程有兩個不相等的實數(shù)根.其中正確的是( )
A. ①②③ B. ①③⑤ C. ①③④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點D在線段BC上時,
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是平行四邊形ABCD的邊AD上的一動點(點E不與A、D重合),連結(jié)CE并延長交BA的延長線于點F。
(1) △CDE與△FAE是否總相似?為什么?
(2)當(dāng)E點為AD的中點時,求證:CE=EF;
(3)當(dāng)E點移至使EC⊥BC時,設(shè)AB=4cm,EF=6cm,∠D=60°時,求CB的長。(結(jié)果不取近似值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com