【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計(jì)量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動(dòng)工人的積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù) 來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過25個(gè)的工人為生產(chǎn)能手.若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù).
【答案】(1)18;(2)中位數(shù);(3)100名.
【解析】(1)根據(jù)條形統(tǒng)計(jì)圖中的數(shù)據(jù)可以得到m的值;
(2)根據(jù)題意可知應(yīng)選擇中位數(shù)比較合適;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以計(jì)該部門生產(chǎn)能手的人數(shù).
(1)由圖可得,
眾數(shù)m的值為18,
故答案為:18;
(2)由題意可得,
如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù)中位數(shù)來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適,
故答案為:中位數(shù);
(3)300×=100(名),
答:該部門生產(chǎn)能手有100名工人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD>AB,點(diǎn)P是CD邊上的任意一點(diǎn)(不含C,D兩端點(diǎn)),過點(diǎn)P作PF∥BC,交對(duì)角線BD于點(diǎn)F.
(1)如圖1,將△PDF沿對(duì)角線BD翻折得到△QDF,QF交AD于點(diǎn)E.求證:△DEF是等腰三角形;
(2)如圖2,將△PDF繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)得到△P'DF',連接P'C,F(xiàn)'B.設(shè)旋轉(zhuǎn)角為α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的內(nèi)部時(shí),求證:△DP'C∽△DF'B.
②如圖3,若點(diǎn)P是CD的中點(diǎn),△DF'B能否為直角三角形?如果能,試求出此時(shí)tan∠DBF'的值,如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+1交x軸于點(diǎn)A,交y軸于點(diǎn)A1,A2,A3,…在直線l上,點(diǎn)B1,B2,B3…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點(diǎn)都在x軸上,則第n個(gè)等腰直角三角形AnBn﹣1Bn,頂點(diǎn)Bn的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經(jīng)過點(diǎn)P(m,1)和Q(1,m),直線PQ與x軸,y軸分別交于C,D兩點(diǎn),點(diǎn)M(x,y)是該函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M分別作x軸和y軸的垂線,垂足分別為A,B.
(1)求∠OCD的度數(shù);
(2)當(dāng)m=3,1<x<3時(shí),存在點(diǎn)M使得△OPM∽△OCP,求此時(shí)點(diǎn)M的坐標(biāo);
(3)當(dāng)m=5時(shí),矩形OAMB與△OPQ的重疊部分的面積能否等于4.1?請(qǐng)說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.
(1)求3A﹣(4A﹣2B)的值;
(2)當(dāng)x取任意數(shù)值,A﹣2B的值是一個(gè)定值時(shí),求(a+A)﹣(2b+B)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊長(zhǎng)分別為3,4,5,△DEF的三邊長(zhǎng)分別為3,3x﹣2,2x+1,若這兩個(gè)三角形全等,則x的值為( 。
A. 2 B. 2或 C. 或 D. 2或或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn),如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為 時(shí),能夠在某一時(shí)刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新知識(shí)一般有兩類:第一類是一般不依賴于其他知識(shí)的新知識(shí),如“數(shù)”,“字母表示數(shù)”這樣的初始性知識(shí);第二類是在某些舊知識(shí)的基礎(chǔ)上聯(lián)系,拓展等方式產(chǎn)生的知識(shí),大多數(shù)知識(shí)是這一類.
(1)多項(xiàng)式乘多項(xiàng)式的法則,是第幾類知識(shí)?
(2)在多項(xiàng)式乘多項(xiàng)式之前,我們學(xué)習(xí)了哪些有關(guān)的知識(shí)?(寫出三條即可)
(3)請(qǐng)你用已有的知識(shí),從數(shù)和形兩個(gè)方面說明多項(xiàng)式乘多項(xiàng)式法則,用(a+b)(a-b)來說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com