如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,矩形DEFG的頂點(diǎn)G與△ABC的頂點(diǎn)C重合,邊GD、GF分別與AC,BC重合。GD=12,GF=16,矩形DEFG沿射線CB的方向以每秒4個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以每秒5個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),過點(diǎn)Q作射線QK⊥AB,交折線BC-CA于點(diǎn)H,矩形DEFG、點(diǎn)Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),矩形DEFG也隨之停止運(yùn)動(dòng)。設(shè)矩形DEFG、點(diǎn)Q運(yùn)動(dòng)的時(shí)間是t秒(t>0)。(1)求線段DF的長(zhǎng);
(2)求運(yùn)動(dòng)過程中,矩形DEFG與Rt△ABC重疊部分的面積s與t的函數(shù)關(guān)系式(寫出自變量的取值范圍);
(3)射線QK能否把矩形DEFG分成面積相等的兩部分?若能,求出t值,若不能,說明理由;
(4)連接DH,當(dāng)DH∥AB時(shí),請(qǐng)直接寫出t值。
(1)連接DF,在Rt△CDF中,CD=12,CF=16,根據(jù)勾股定理:
DF==20
(2)①當(dāng)0<t ≤2時(shí),s=12×16=192
②當(dāng)2<t <6時(shí),設(shè)矩形DEFG的邊EF交AB于點(diǎn)M,邊DE交AB于點(diǎn)N
∵ BF=24-4t tanB=
∴MF=(24-4t)=18-3t EM=3t-6 NE=EM=4t-8
∴s=192-EM.EN=192-6
③當(dāng)6≤t≤10時(shí),設(shè)DG與AB交于點(diǎn)M,BF=40- 4t
s=MF.FB=
(3)能,當(dāng)QK經(jīng)過矩形DEFG的對(duì)稱中心O時(shí),就可以把矩形DEFG分成面積相等的兩部分;
∵在Rt△CDF與Rt△CAB中, ∠C=90°
∴Rt△CDF∽R(shí)t△CAB ∴∠CFD=∠B ∴DF∥AB
DF=20, OF=10 BF=24-4t HF== QB=5t
∴
t=
(4) t=
【解析】(1)由勾股定理即可求出DF的長(zhǎng);
(2)分0<t ≤2,2<t <6,6≤t≤10三種情況進(jìn)行討論;
(3)連接DF,過點(diǎn)F作FH⊥AB于點(diǎn)H,由四邊形CDEF為矩形,QK把矩形CDEF分為面積相等的兩部分,根據(jù)△HBF∽△CBA,對(duì)應(yīng)邊的比相等,就可以求得t的值;
(4)當(dāng)PG∥AB時(shí)四邊形PHQG是矩形,由此可以直接寫出t.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com