如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,矩形DEFG的頂點(diǎn)G與△ABC的頂點(diǎn)C重合,邊GD、GF分別與AC,BC重合。GD=12,GF=16,矩形DEFG沿射線CB的方向以每秒4個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以每秒5個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),過點(diǎn)Q作射線QK⊥AB,交折線BC-CA于點(diǎn)H,矩形DEFG、點(diǎn)Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),矩形DEFG也隨之停止運(yùn)動(dòng)。設(shè)矩形DEFG、點(diǎn)Q運(yùn)動(dòng)的時(shí)間是t秒(t>0)。(1)求線段DF的長(zhǎng);

(2)求運(yùn)動(dòng)過程中,矩形DEFG與Rt△ABC重疊部分的面積s與t的函數(shù)關(guān)系式(寫出自變量的取值范圍);

(3)射線QK能否把矩形DEFG分成面積相等的兩部分?若能,求出t值,若不能,說明理由;

(4)連接DH,當(dāng)DH∥AB時(shí),請(qǐng)直接寫出t值。

 

【答案】

(1)連接DF,在Rt△CDF中,CD=12,CF=16,根據(jù)勾股定理:

          DF==20           

(2)①當(dāng)0<t ≤2時(shí),s=12×16=192   

     ②當(dāng)2<t <6時(shí),設(shè)矩形DEFG的邊EF交AB于點(diǎn)M,邊DE交AB于點(diǎn)N

     ∵  BF=24-4t tanB=  

∴MF=(24-4t)=18-3t   EM=3t-6    NE=EM=4t-8

∴s=192-EM.EN=192-6    

③當(dāng)6≤t≤10時(shí),設(shè)DG與AB交于點(diǎn)M,BF=40- 4t

   s=MF.FB=    

(3)能,當(dāng)QK經(jīng)過矩形DEFG的對(duì)稱中心O時(shí),就可以把矩形DEFG分成面積相等的兩部分;                                                 

  ∵在Rt△CDF與Rt△CAB中, ∠C=90°       

∴Rt△CDF∽R(shí)t△CAB    ∴∠CFD=∠B    ∴DF∥AB

DF=20,    OF=10   BF=24-4t  HF==   QB=5t

          

    t=                   

(4) t=                

【解析】(1)由勾股定理即可求出DF的長(zhǎng);

(2)分0<t ≤2,2<t <6,6≤t≤10三種情況進(jìn)行討論;

(3)連接DF,過點(diǎn)F作FH⊥AB于點(diǎn)H,由四邊形CDEF為矩形,QK把矩形CDEF分為面積相等的兩部分,根據(jù)△HBF∽△CBA,對(duì)應(yīng)邊的比相等,就可以求得t的值;

(4)當(dāng)PG∥AB時(shí)四邊形PHQG是矩形,由此可以直接寫出t.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案