【題目】在平面直角坐標(biāo)系中有三點(diǎn)A(a,0),B(b,0),C(1,3),且a,b滿足|3b+a﹣2|+=0

(1)A,B的坐標(biāo);

(2)x負(fù)半軸上有一點(diǎn)D,使SDOC=SABC,求點(diǎn)D坐標(biāo):

(3)在坐標(biāo)軸上是否還存在這樣的點(diǎn)D,使SDOC=SABC仍然成立?若存在直接寫(xiě)出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1)(﹣4,0),B(2,0);(2)點(diǎn)D坐標(biāo)為(﹣2,0);(3)點(diǎn)D坐標(biāo)為(2,0),(0,6),(0,﹣6).

【解析】

(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性列方程組解出即可;
(2)設(shè)點(diǎn)D坐標(biāo)為(d,0),且d<0,根據(jù)列式SDOC=SABC可得d的值,得出點(diǎn)D的坐標(biāo);

(3)還有一個(gè)d=2,再計(jì)算當(dāng)點(diǎn)Dy軸上時(shí),其坐標(biāo)為(0,y),根據(jù)面積公式可得結(jié)論.

(1)|3b+a2|+=0,

3b+a2=0,ba6=0,

解這個(gè)方程組,a=4,b=2,

A(4,0),B(2,0);

(2)設(shè)點(diǎn)D坐標(biāo)為(d,0),且d<0

SDOC=SABC,

SDOC=×|d|×3=× (4+2)×3,

|d|=2,

d=2

點(diǎn)D坐標(biāo)為(2,0);

(3)答:在坐標(biāo)軸上還存在這樣的點(diǎn)D,使SDOC=SABC,仍然成立,

(2)可知:d還可以為2,

D(2,0),

當(dāng)點(diǎn)Dy軸上時(shí),設(shè)D(0,y),

SDOC=SABC,

×|y|×1=××6×3

y=±6,

D(0,6)(0,6),

綜上所述,點(diǎn)D坐標(biāo)為(2,0),(0,6),(0,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

例:已知: ,

求: 的值.

解: ,

,

,,

,,

解決問(wèn)題:

(1)若 ,求 x、y 的值;

(2)已知 ,, 的三邊長(zhǎng)且滿足

①直接寫(xiě)出a=__________.b=___________

②若 中最短邊的邊長(zhǎng)(即c<a;c<b),且 為整數(shù),直接寫(xiě)出 的值可能是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 x軸、y軸分別交于A、B兩點(diǎn),直線x軸、y軸分別交于C、兩點(diǎn),且

(1)求直線的解析式,并判斷的形狀;

(2)如圖,為直線上一點(diǎn),橫坐標(biāo)為為直線上一動(dòng)點(diǎn),當(dāng)最小時(shí),將線段沿射線方向平移,平移后、的對(duì)應(yīng)點(diǎn)分別為、,當(dāng)最小時(shí),求點(diǎn)的坐標(biāo);

(3)如圖,將沿著軸翻折,得到,再將繞著點(diǎn)順時(shí)針旋轉(zhuǎn))得到,直線與直線、軸分別交于點(diǎn)、.當(dāng)為等腰三角形時(shí),請(qǐng)直接寫(xiě)出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當(dāng)t=3時(shí),求足球距離地面的高度;
(2)當(dāng)足球距離地面的高度為10米時(shí),求t;
(3)若存在實(shí)數(shù)t1 , t2(t1≠t2)當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1.請(qǐng)同學(xué)們利用網(wǎng)格線進(jìn)行畫(huà)圖:

(1)在圖1中,畫(huà)一個(gè)頂點(diǎn)為格點(diǎn)、面積為5的正方形;

(2)在圖2中,已知線段AB、CD,畫(huà)線段EF,使它與AB、CD組成軸對(duì)稱圖形;(要求畫(huà)出所有符合題意的線段)

(3)在圖3中,找一格點(diǎn)D,滿足:CB、CA的距離相等;到點(diǎn)A、C的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=45°,把△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,請(qǐng)直接寫(xiě)出圖中所有的全等三角形;

(2)在四邊形ABCD中,AB=AD,B=D=90°.

①如圖2,若E、F分別是邊BC、CD上的點(diǎn),且2EAF=BAD,求證:EF=BE+DF;

②若E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且2EAF=BAD,①中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以O為坐標(biāo)原點(diǎn)在正方形網(wǎng)格中建立直角坐標(biāo)系,若每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)試在y軸上找一點(diǎn)P,使PC+PB的值最小,請(qǐng)?jiān)趫D中標(biāo)出P點(diǎn)的位置(留下作圖痕跡),并求出PC+PB的最小值;

(2)將△ABC先向下平移3個(gè)單位,再向右平移4個(gè)單位后得到△A1B1C1,請(qǐng)?jiān)趫D中畫(huà)出△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四邊形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了了解初中生對(duì)安全知識(shí)掌握情況,抽取了50名初中生進(jìn)行安全知識(shí)測(cè)試,并將測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制成了頻數(shù)分布表和頻數(shù)分布直方圖(未完成). 安全知識(shí)測(cè)試成績(jī)頻數(shù)分布表

組別

成績(jī)x(分?jǐn)?shù))

組中值

頻數(shù)(人數(shù))

1

90≤x<100

95

10

2

80≤x<90

85

25

3

70≤x<80

75

12

4

60≤x<70

65

3


(1)完成頻數(shù)分布直方圖;
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)在第組;
(3)若將各組的組中值視為該組的平均成績(jī),則此次測(cè)試的平均成績(jī)?yōu)?/span>;
(4)若將90分以上(含90分)定為“優(yōu)秀”等級(jí),則該縣10000名初中生中,獲“優(yōu)秀”等級(jí)的學(xué)生約為人.

查看答案和解析>>

同步練習(xí)冊(cè)答案