【題目】如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.
(1)求證:GF=BF;
(2)若EB=1,BC=4,求AG的長;
(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FOED=ODEF.
【答案】(1)證明見解析;(2)AG=;(3)證明見解析.
【解析】
(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;
(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計算即可;
(3)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結(jié)論.
(1)∵四邊形ABCD是正方形,
∴AD∥BC,AB∥CD,AD=CD,
∵GF∥BE,
∴GF∥BC,
∴GF∥AD,
∴,
∵AB∥CD,
,
∵AD=CD,
∴GF=BF;
(2)∵EB=1,BC=4,
∴=4,AE=,
∴=4,
∴AG=;
(3)延長GF交AM于H,
∵GF∥BC,
∴FH∥BC,
∴,
∴,
∵BM=BE,
∴GF=FH,
∵GF∥AD,
∴,,
∴,
∴,
∴FOED=ODEF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A.在△ABC中,若∠B=∠C﹣∠A,則△ABC是直角三角形
B.在△ABC中,若a=(b+c) (b﹣c),則△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=3:4:5,則△ABC是直角三角形
D.在△ABC中,若a:b:c=3:4:5,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,在平面內(nèi),如果一個圖形繞著一個定點旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)的這個角稱為這個圖形的一個旋轉(zhuǎn)角.例如,正方形繞著它的對角線的交點旋轉(zhuǎn)后能與自身重合所以正方形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為.
判斷下列說法是否正確(在相應(yīng)橫線里填上“對”或“錯”)
①正五邊形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為.________
②長方形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為.________
填空:下列圖形中時旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角為的是________.(寫出所有正確結(jié)論的序號)
①正三角形②正方形③正六邊形④正八邊形
寫出兩個多邊形,它們都是旋轉(zhuǎn)對稱圖形,都有一個旋轉(zhuǎn)角為,其中一個是軸對稱圖形,但不是中心對稱圖形;另一個既是軸對稱圖形,又是中心對稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,厘米,厘米,點從出發(fā),以每秒厘米的速度向運動,點從同時出發(fā),以每秒厘米的速度向運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,那么,當(dāng)以、、為頂點的三角形與相似時,運動時間為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生利用標(biāo)桿測量學(xué)校旗桿的高度,標(biāo)桿CD等于3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛距地面的高度EF=1.6m,人與標(biāo)桿CD的水平距離DF=2m.則旗桿AB的高度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、C、D三點在同一條直線上,連接線段BE、AD交于點F,連接CF,
(1)求證:∠FBC=∠FAC.
(2)求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面內(nèi),,,.
(1)求證:;
(2)當(dāng)時,取的中點分別為,連接,如圖2,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com