【題目】已知代數式(n≠-2).
(1)①用含n的代數式表示m;
②若m、n均取整數,求m、n的值.
(2)當n取a、b時,m對應的值為c、d. 當-2<b<a時,試比較c、d的大小.
科目:初中數學 來源: 題型:
【題目】已知某實驗中學有一塊四邊形的空地ABCD,如圖所示,學校計劃在空地上種植草坪,經測量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,間學校需要投入多少資金買草坪?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:求解一元一次方程,需要根據等式的基本性質,把方程轉化為x=a的形式;求解二元一次方程組,需要通過消元把它轉化為一元一次方程來解;求解三元一次方程組,需要把它轉化為二元一次方程組來解;求解一元二次方程,需要把它轉化為兩個一元一次方程來解;求解分式方程,需要通過去分母把它轉化為整式方程來解,各類方程的解法不盡相同,但是它們都用到一種共同的基本數學思想﹣轉化,即把未知轉化為已知來求解.
用“轉化“的數學思想,我們還可以解一些新的方程.
例如,解一元三次方程x3+x2﹣2x=0,通過因式分解把它轉化為x(x2+x﹣2)=0,通過解方程x=0和x2+x﹣2=0,可得原方程x3+x2﹣2x=0的解.
再例如,解根號下含有來知數的方程:=x,通過兩邊同時平方把它轉化為2x+3=x2,解得:x1=3,x2=﹣1.因為2x+3≥0,且x≥0,所以x=﹣1不是原方程的根,x=3是原方程的解.
(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)拓展:求方程=x﹣1的解;
(3)應用:在一個邊長為1的正方形中構造一個如圖所示的正方形;在正方形ABCD邊上依次截取AE=BF=CG=DH=,連接AG,BH,CE,DF,得到正方形MNPQ,若小正方形MNPQ(圖中陰影部分)的邊長為,求n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1:y1=-x+m與y軸交于點A(0,6),直線l2:y2=kx+1分別與x軸交于點B(-2,0),與y軸交于點C,兩條直線l1、l2相交于點D,連接AB.
(1)求兩直線l1、l2交點D的坐標;
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在RtABC中,∠C=90°,∠A=30°,在直線AC上找點P,使△ABP是等腰三角形,則∠APB的度數為_______________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:
依據2:
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,FD的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數量關系與位置關系,并寫出證明過程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com