將分式方程變形為整式方程時(shí),有時(shí)可能產(chǎn)生不適合原方程的根,這種根常稱為________,因此在解分式方程時(shí),必須________.

答案:
解析:

增根,進(jìn)行檢驗(yàn)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面解方程
x-1
x
-
1-x
x+1
=
5x-5
2x+2
的過程,然后回答后面的問題:
解:第一步:將原方程整理為
x-1
x
-
1-x
x+1
=
5(x-1)
2(x+1)

第二步:方程兩邊同除以(x-1),得
1
x
-
1
x+1
=
5
2(x+1)

第三步:去分母,得2(x+1)+2x=5x.
第四步:解這個(gè)整式方程得x=2.
上面解題過程中:
(1)第三步變形的依據(jù)是
分式的基本性質(zhì)
分式的基本性質(zhì)
;
(2)出現(xiàn)錯(cuò)誤的一步是
第二步
第二步

(3)上述解題過程中還缺少的一步是
檢驗(yàn)
檢驗(yàn)
;
(4)方程除了有解x=2還有其他的解嗎?如有,請(qǐng)直接寫出另外的解
x=1
x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書九年級(jí)數(shù)學(xué)上 題型:044

用“拆項(xiàng)法”解分式方程

  大家知道,解分式方程的基本方法是,把方程的兩邊同乘以各分母的最簡(jiǎn)公分母,化為整式方程來解,而對(duì)于一些特殊的分式方程來說,采用上述方法往往越解越繁.下面我們介紹一種簡(jiǎn)捷、明快的方法--拆項(xiàng)法.

  例:解方程

  解:先降低方程中各分式分子的次數(shù),將原方程變形為

  即(4+)-(7+)=(1-)-(4-)

  整理得

  兩邊各自通分得

  

  ∴(x-2)(x-1)=(x-7)(x-6)

  即x2-3x+2=x2-13x+42

  也即10x=40  ∴x=4

  經(jīng)檢驗(yàn)知,x=4是原方程的根.

請(qǐng)你運(yùn)用上述方法,解分式方程

查看答案和解析>>

同步練習(xí)冊(cè)答案