已知,,…

依據(jù)上述規(guī)律,計(jì)算的結(jié)果為    (寫成一個(gè)分?jǐn)?shù)的形式)

 

【答案】

【解析】

試題分析:∵,,…

。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點(diǎn)P的坐標(biāo)為(m,0),在x軸上存在點(diǎn)Q(不與P點(diǎn)重合),以PQ為邊作正方形PQMN,使點(diǎn)M落在反比例函數(shù)y=-
2
x
的圖象上.小明對(duì)上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個(gè),且一個(gè)正方形的頂點(diǎn)M在第四象限,另一個(gè)正方形的頂點(diǎn)M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-
2
x
,P點(diǎn)坐標(biāo)為(1,0),圖中已畫出一符合條件的一個(gè)正方形PQMN,請(qǐng)你在圖中畫出符合條件的另一個(gè)正方形PQ1M1N1,并寫出點(diǎn)M1的坐標(biāo);M1的坐標(biāo)是
 

(2)請(qǐng)你通過改變P點(diǎn)坐標(biāo),對(duì)直線M1M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得k﹦
 
,若點(diǎn)P的坐標(biāo)為(m,0)時(shí),則b﹦
 
;
(3)依據(jù)(2)的規(guī)律,如果點(diǎn)P的坐標(biāo)為(6,0),請(qǐng)你求出點(diǎn)M1和點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀下題及證明過程:已知:如圖,D是△ABC中BC邊上一點(diǎn),E是AD上一點(diǎn),EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.
證明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC…第一步
∴∠BAE=∠CAE…第二步
問上面證明過程是否正確?若正確,請(qǐng)寫出每一步推理的依據(jù);若不正確,請(qǐng)指出錯(cuò)在哪一步,并寫出你認(rèn)為正確的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

看圖回答下面問題:
(1)如下圖,已知:直線m∥n,A、B為直線n上兩點(diǎn),C、P為直線m上兩點(diǎn).請(qǐng)寫出圖中,△ABC和△ABP面積之間的數(shù)量關(guān)系;
精英家教網(wǎng)
(2)如下圖,邊長(zhǎng)為6的正三角形ABC,P是BC邊上一點(diǎn),且PB=1,以PB為一邊作正三角形PBD,求△ADC的面積;
精英家教網(wǎng)
(3)如下圖,邊長(zhǎng)為6的正三角形ABC,P是BC邊上一點(diǎn),且PB=2,以PB為一邊作正三角形PBD,求△ADC的面積;
精英家教網(wǎng)
(4)根據(jù)上述計(jì)算的結(jié)果,你發(fā)現(xiàn)了怎樣的規(guī)律?提出自己的猜想并依據(jù)下圖予以證明;
精英家教網(wǎng)
(5)如下圖,有一塊正三角形的草皮ABC,由于某種原因,需要將三角形草皮ABE移植到三角形的草皮AEC的右側(cè),成為一塊新的三角形草皮ADC(A、E、D三點(diǎn)要在一條直線上),并保持其面積不變,請(qǐng)你畫圖說明如何確定點(diǎn)D的位置.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M是線段AB的中點(diǎn),點(diǎn)N在線段MB上,MN=
35
AM,若MN=3cm,求線段AB的長(zhǎng).(不寫依據(jù))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下面推理過程的括號(hào)內(nèi)填上推理的依據(jù)
已知,如圖所示,在?ABCD中,BF=DE.
求證:∠EAF=∠ECF
證明:∵四邊形ABCD是平行四邊形(
已知
已知

∴DC=AB(
平行四邊形的對(duì)邊相等
平行四邊形的對(duì)邊相等

DC∥AB(
平行四邊形的對(duì)邊相互平行
平行四邊形的對(duì)邊相互平行

又∵BF=DE(
已知
已知

∴AB-BF=DC-DE(
等量代換
等量代換

即AF=CE(
等量代換
等量代換

∴AF 
.
CE
∴四邊形AFCE是平行四邊形(
對(duì)邊平行且相等的四邊形是平行四邊形
對(duì)邊平行且相等的四邊形是平行四邊形

∴∠EAF=∠ECF(
平行四邊形的對(duì)角相等
平行四邊形的對(duì)角相等

查看答案和解析>>

同步練習(xí)冊(cè)答案